Ovarian cycling and reproductive state shape the vaginal microbiota in wild baboons

E. A. Miller et al.

This document contains R code for all statistical analyses conducted for the manuscript as well as the R code to generate all figures.

Required data files:

All data files required to reproduce analyses will be made available on the Dryad Digital Repository (http://datadryad.org/).

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>otu_table.txt</td>
<td>OTU table with taxonomic information in last column (not normalized for read count)</td>
</tr>
<tr>
<td>otu_table_all.txt</td>
<td>OTU table with all OTUs (even those in only one sample)</td>
</tr>
<tr>
<td>rel_abundance_phylum.txt</td>
<td>phylum relative abundance by sample (created with Qiime script summarize_taxa.py)</td>
</tr>
<tr>
<td>rel_abundance_class.txt</td>
<td>class relative abundance by sample (created with Qiime script summarize_taxa.py)</td>
</tr>
<tr>
<td>rel_abundance_order.txt</td>
<td>order relative abundance by sample (created with Qiime script summarize_taxa.py)</td>
</tr>
<tr>
<td>rel_abundance_family.txt</td>
<td>family relative abundance by sample (created with Qiime script summarize_taxa.py)</td>
</tr>
<tr>
<td>rel_abundance_genus.txt</td>
<td>genus relative abundance by sample (created with Qiime script summarize_taxa.py)</td>
</tr>
<tr>
<td>rel_abundance_species.txt</td>
<td>species relative abundance by sample (created with Qiime script summarize_taxa.py)</td>
</tr>
<tr>
<td>metadata.txt</td>
<td>Sample metadata (including alpha diversity metrics)</td>
</tr>
<tr>
<td>all_consort.txt</td>
<td>Consortship and group size data on all ABRP adult female between 2007 and 2010</td>
</tr>
<tr>
<td>File Name</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>bray_curtis_matrix.txt</td>
<td>Bray-Curtis dissimilarity matrix</td>
</tr>
<tr>
<td>weighted_unifrac_matrix.txt</td>
<td>Weighted UniFrac distance matrix</td>
</tr>
<tr>
<td>lefse_rep.txt</td>
<td>Results of reproductive states LEfSe analyses</td>
</tr>
<tr>
<td>lefse_cycle.txt</td>
<td>Results of ovarian cycle phases LEfSe analyses</td>
</tr>
<tr>
<td>vaginal_ph.txt</td>
<td>Vaginal pH measurements from a separate set of 20 female baboons with corresponding reproductive state or ovarian cycle phase</td>
</tr>
<tr>
<td>relatedness.txt</td>
<td>Relatedness matrix between baboons</td>
</tr>
<tr>
<td>consort_history.txt</td>
<td>Consortship history for female by sample</td>
</tr>
</tbody>
</table>

```r
otu <- read.table("otu_table.txt", header=TRUE, row.names=1)
tonu_all <- read.table("otu_table_all.txt", header=TRUE, row.names=1)
phylum <- read.table("rel_abundance_phylum.txt", header=TRUE, row.names=1)
class <- read.table("rel_abundance_class.txt", header=TRUE, row.names=1)
order <- read.table("rel_abundance_order.txt", header=TRUE, row.names=1)
family <- read.table("rel_abundance_family.txt", header=TRUE, row.names=1)
genus <- read.table("rel_abundance_genus.txt", header=TRUE, row.names=1)
species <- read.table("rel_abundance_species.txt", header=TRUE, row.names=1)
meta <- read.table("metadata.txt", header=TRUE, row.names=1, na.strings="NA")
all_consort <- read.table("all_consorts.txt", header=TRUE)
bray <- read.table("bray_curtis_matrix.txt", header=TRUE, row.names=1)
unifrac <- read.table("weighted_unifrac_matrix.txt", header=TRUE, row.names=1)
lefse_rep <- read.table("lefse_rep.txt", header=TRUE, row.names=1)
lefse_cycle <- read.table("lefse_cycle.txt", header=TRUE, row.names=1)
ph <- read.table("vaginal_ph.txt", header=TRUE)
relate <- as.matrix(read.table("relatedness.txt", header=TRUE, row.names=1))
history <- as.matrix(read.table("consort_history.txt", header=TRUE, row.names=1))
```

Sequencing metrics:

```r
read_count <- data.frame(read_count=(colSums(otu[1:52])))
# Total read count
sum(read_count$read_count)
```

```
## [1] 188665626
```

```r
# Range read count per sample
range(read_count$read_count)
```
Mean read count per sample

```r
mean(read_count)
```

Add read count to metadata dataframe

```r
meta <- merge(meta, read_count, by="row.names")
rownames(meta) <- meta[, 'Row.names']
meta <- subset(meta, select=-c(Row.names))
```

Good's Coverage Estimator

\[1 - \left(\frac{n}{N} \right)\], where \(n\) is the number of OTUs in a single read and \(N\) is the total number of reads analyzed

```r
n <- colSums(otu[1:52] == 1)
N <- colSums(otu[1:52])
coverage <- data.frame(coverage=1-(n/N))
```

Add Good's Coverage Estimator to metadata dataframe

```r
meta <- merge(meta, coverage, by="row.names")
rownames(meta) <- meta[, 'Row.names']
meta <- subset(meta, select=-c(Row.names))
```

OTU table normalization:

To control for differences in sequencing depth between samples, we normalized OTU table read counts using cumulative-sum scaling implemented in the R package, metagenomeSeq (version 1.4.2).

- Note: Starting with version 1.7.10, metagenomeSeq updated the default quantile estimate (.5) for low estimates. For the version or metagenomeSeq used in this manuscript (1.4.2), the quantile estimate was 0.3144699.
library(metagenomeSeq) #version 1.4.2
obj <- newMRexperiment(as.matrix(otu[1:52]))
p <- cumNormStat(obj)
Use p <- 0.3144699 if using metagenomeSeq version 1.7.10 or later.
obj_sf <- cumNorm(obj, p=p)

results

```r
# Add back in taxonomy
tax <- otu[, "taxonomy", drop=FALSE]
otu_norm_tax <- merge(otu_norm, tax, by="row.names")
rownames(otu_norm_tax) <- otu_norm_tax$Row.names

# Add back in taxonomy
rownames(otu_norm_tax) <- gsub("k__|p__", ",", rownames(otu_norm_tax))
rownames(otu_norm_tax) <- gsub("\;", ",", rownames(otu_norm_tax))
rownames(otu_norm_tax) <- gsub("Other", "Unclassified", rownames(otu_norm_tax))
rownames(otu_norm_tax) <- gsub("Unassigned", "Unclassified", rownames(otu_norm_tax))
rownames(otu_norm_tax) <- gsub("Candidate_division_SR1", "Candidate division SR1", rownames(otu_norm_tax))

# Calculate data for TABLE S2A:

# Calculate phylum prevalence and % relative abundance (mean, SD, minimum, and maximum)
phylum1 <- phylum
rownames(phylum1) <- gsub("\|\|\", ",", rownames(phylum1))
rownames(phylum1) <- gsub(\"\", ",", rownames(phylum1))
rownames(phylum1) <- gsub("Unclassified", "Unclassified", rownames(phylum1))
rownames(phylum1) <- gsub("Candidate_division_SR1", "Candidate division SR1", rownames(phylum1))

Table_S2A <- cbind(as.data.frame(rowSums(phylum1 != 0)),
round(as.data.frame(rowSums(phylum1 != 0))/ncol(phylum1)*100, 2),
format(as.data.frame(rowMeans(phylum1)*100), digits=3, scientific=TRUE),
format(as.data.frame(apply(phylum1, 1, sd, na.rm=TRUE)*100),
digits=3, scientific=TRUE),
format(as.data.frame(apply(phylum1, 1, min, na.rm=TRUE)*100),
digits=3, scientific=TRUE),
format(as.data.frame(apply(phylum1, 1, max, na.rm = TRUE)*100),
digits=3, scientific=TRUE))
colnames(Table_S2A) <- c("prev_n", "prev", "ab_mean", "ab_sd", "ab_min", "ab_max")
Table_S2A
```
<table>
<thead>
<tr>
<th></th>
<th>prev_n</th>
<th>prev</th>
<th>ab_mean</th>
<th>ab_sd</th>
<th>ab_min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>52</td>
<td>100.00</td>
<td>1.37e+00</td>
<td>1.62e+00</td>
<td>2.93e-02</td>
</tr>
<tr>
<td>Archaea</td>
<td>Euryarchaeota</td>
<td>44</td>
<td>84.62</td>
<td>1.07e-01</td>
<td>4.19e-01</td>
</tr>
<tr>
<td>Archaea</td>
<td>Thaumarchaeota</td>
<td>41</td>
<td>78.85</td>
<td>2.32e-03</td>
<td>4.09e-03</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Unclassified</td>
<td>34</td>
<td>65.38</td>
<td>1.56e-04</td>
<td>3.33e-04</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Acidobacteria</td>
<td>51</td>
<td>98.08</td>
<td>1.79e-02</td>
<td>3.47e-02</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Actinobacteria</td>
<td>52</td>
<td>100.00</td>
<td>9.66e+00</td>
<td>1.19e+01</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Armatisimonadetes</td>
<td>45</td>
<td>86.54</td>
<td>4.99e-03</td>
<td>1.25e-02</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Bacteroidetes</td>
<td>52</td>
<td>100.00</td>
<td>1.09e+01</td>
<td>7.89e+00</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Candidate division SR1</td>
<td>52</td>
<td>100.00</td>
<td>2.67e-01</td>
<td>7.55e-01</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Chlorobi</td>
<td>6</td>
<td>11.54</td>
<td>1.63e-04</td>
<td>6.90e-04</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Chloroflexi</td>
<td>51</td>
<td>98.08</td>
<td>2.38e-02</td>
<td>5.32e-02</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Cyanobacteria</td>
<td>52</td>
<td>100.00</td>
<td>4.06e-02</td>
<td>1.00e-01</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Deinococcus-Thermus</td>
<td>40</td>
<td>76.92</td>
<td>4.60e-03</td>
<td>1.48e-02</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Elusimicrobia</td>
<td>35</td>
<td>67.31</td>
<td>1.79e-02</td>
<td>9.52e-02</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Fibrobacteres</td>
<td>14</td>
<td>26.92</td>
<td>4.55e-04</td>
<td>2.07e-03</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Firmicutes</td>
<td>52</td>
<td>100.00</td>
<td>3.26e+01</td>
<td>1.83e+01</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Fusobacteria</td>
<td>52</td>
<td>100.00</td>
<td>2.86e+01</td>
<td>2.24e+01</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Gemmatimonadetes</td>
<td>52</td>
<td>100.00</td>
<td>3.06e-02</td>
<td>5.53e-02</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Hydrogenedentes</td>
<td>12</td>
<td>23.08</td>
<td>5.54e-04</td>
<td>2.21e-03</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Lentisphaerae</td>
<td>52</td>
<td>100.00</td>
<td>5.05e-01</td>
<td>1.60e+00</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Nitrospirae</td>
<td>25</td>
<td>48.08</td>
<td>2.82e-04</td>
<td>6.56e-04</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Planctomycetes</td>
<td>49</td>
<td>94.23</td>
<td>7.31e-03</td>
<td>1.44e-02</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Proteobacteria</td>
<td>52</td>
<td>100.00</td>
<td>1.27e+01</td>
<td>1.46e+01</td>
</tr>
<tr>
<td>Bacteria</td>
<td>SHA-109</td>
<td>32</td>
<td>61.54</td>
<td>8.40e-03</td>
<td>3.72e-02</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Saccharibacteria</td>
<td>40</td>
<td>76.92</td>
<td>1.79e-03</td>
<td>4.47e-03</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Spirochaetae</td>
<td>52</td>
<td>100.00</td>
<td>6.84e-01</td>
<td>1.07e+00</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Synergistetes</td>
<td>6</td>
<td>11.54</td>
<td>4.13e-03</td>
<td>2.97e-02</td>
</tr>
<tr>
<td>Bacteria</td>
<td>TM6</td>
<td>2</td>
<td>3.85</td>
<td>3.35e-06</td>
<td>2.00e-05</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Tenericutes</td>
<td>52</td>
<td>100.00</td>
<td>2.53e+00</td>
<td>6.91e+00</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Verrucomicrobia</td>
<td>47</td>
<td>90.38</td>
<td>6.06e-03</td>
<td>1.35e-02</td>
</tr>
<tr>
<td>Bacteria</td>
<td>WCHB1-60</td>
<td>8</td>
<td>15.38</td>
<td>1.32e-04</td>
<td>6.26e-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ab_max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>6.52e+00</td>
</tr>
<tr>
<td>Archaea</td>
<td>Euryarchaeota</td>
</tr>
<tr>
<td>Archaea</td>
<td>Thaumarchaeota</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Unclassified</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Acidobacteria</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Actinobacteria</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Armatisimonadetes</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Bacteroidetes</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Candidate division SR1</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Chlorobi</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Cyanobacteria</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Deinococcus-Thermus</td>
</tr>
</tbody>
</table>
Bacteria
<table>
<thead>
<tr>
<th>Phylum</th>
<th>Relative Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elusimicrobia</td>
<td>6.80e-01</td>
</tr>
<tr>
<td>Fibrobacteres</td>
<td>1.44e-02</td>
</tr>
<tr>
<td>Firmicutes</td>
<td>8.08e+01</td>
</tr>
<tr>
<td>Fusobacteria</td>
<td>7.18e+01</td>
</tr>
<tr>
<td>Gemmatimonadetes</td>
<td>2.37e-01</td>
</tr>
<tr>
<td>Hydrogenedentes</td>
<td>1.42e-02</td>
</tr>
<tr>
<td>Lentisphaerae</td>
<td>7.72e+00</td>
</tr>
<tr>
<td>Nitrospirae</td>
<td>3.25e-03</td>
</tr>
<tr>
<td>Planctomycetes</td>
<td>6.37e-02</td>
</tr>
<tr>
<td>Proteobacteria</td>
<td>6.90e+01</td>
</tr>
<tr>
<td>SHA-109</td>
<td>2.68e-01</td>
</tr>
<tr>
<td>Saccharibacteria</td>
<td>2.87e-02</td>
</tr>
<tr>
<td>Spirochaetae</td>
<td>5.42e+00</td>
</tr>
<tr>
<td>Synergistetes</td>
<td>2.14e-01</td>
</tr>
<tr>
<td>TM6</td>
<td>1.41e-04</td>
</tr>
<tr>
<td>Tenericutes</td>
<td>4.76e+01</td>
</tr>
<tr>
<td>Verrucomicrobia</td>
<td>7.16e-02</td>
</tr>
<tr>
<td>WCHB1-60</td>
<td>4.13e-03</td>
</tr>
</tbody>
</table>

How many bacterial and archaeal phyla?

```r
nrow(subset(Table_S2A, !rownames(Table_S2A) %in% c("Unclassified|Unclassified", "Bacteria|Unclassified")))
```

[1] 29

How many bacterial phyla have a prevalence of 100%?

```r
nrow(subset(Table_S2A, !rownames(Table_S2A) %in% c("Unclassified|Unclassified", "Bacteria|Unclassified") & prev==100))
```

[1] 11

Which bacterial phyla have a relative abundance ≥1%?

```r
mean_p <- data.frame(ab_mean=rowMeans(phylum1)*100)
subset(mean_p, ab_mean >= 1 & !rownames(mean_p) %in% c("Unclassified|Unclassified", "Bacteria|Unclassified"))
```
ab_mean
Bacteria|Actinobacteria 9.662413
Bacteria|Bacteroidetes 10.852255
Bacteria|Firmicutes 32.554020
Bacteria|Fusobacteria 28.574172
Bacteria|Proteobacteria 12.717570
Bacteria|Tenericutes 2.531569

FIGURE 2A:
Subset into Archaea, Bacteria, or unclassified
archaea <- colSums(subset(phylum1, rownames(phylum1) %in% grep("Archaea", rownames(phylum1), value=TRUE)))
unclassified <- colSums(subset(phylum1, rownames(phylum1) %in% grep('Unclassified', rownames(phylum1), value=TRUE)))
bacteria <- subset(phylum1, rownames(phylum1) %in% grep('Bacteria', rownames(phylum1), value=TRUE))
high_bacteria <- colSums(subset(bacteria, (rowMeans(bacteria) < 0.01) & (rownames(bacteria) != "Bacteria|Unclassified")))
unclass_bacteria <- subset(bacteria, rownames(bacteria) == "Bacteria|Unclassified")

Subset out Bacteria phyla that have <1% mean relative abundance
phylum2 <- as.matrix(rbind(high_bacteria, low_bacteria, unclass_bacteria, archaea, unclassified) * 100)
rownames(phylum2) <- c(rownames(high_bacteria), "Low abundance Bacteria", "Unclassified Bacteria", "Archaea", "Unclassified kingdom")

Order samples by reproductive state and ovarian cycle phase
meta$rep_state <- factor(meta$rep_state, levels=c("PPA", "C", "P", "MC"))
meta$cycle_phase <- factor(meta$cycle_phase, levels=c("A", "S", "O", "D"))
metal <- meta[order(meta$rep_state, meta$cycle_phase, meta$ppa_day, meta$cycle_day, meta$preg_day, na.last=FALSE),]

Stacked bar plot
layout(matrix(c(1,2), 1, 2), widths=c(11, 2))
par(xpd=NA)
color_p <- c("#984EA3","#FF7F00","#FFF33","#4DAF4A","#377EB8","#A65628","#999999","#FB9A99","#E41A1C","black")

barplot(Figure_2A, axes=FALSE, space = 0.3, axisnames = FALSE, col=color_p)
axis(2, at=c(0, 20, 40, 60, 80, 100), pos=-0.5, cex.axis=1.5, ylab="Relative phylum abundance (%)")
mtext("Relative phylum abundance (%)", side=2, line=1.5, cex=1.5)
legend(x=68, y=100, legend=rev(rownames(Figure_2A)), fill=rev(color_p), cex=1)
text(x=-7, y=105, "A", cex=2.5)
rect(c(0.3,14.7,25.05,36.8,41.9,51.1,66.6),rep(-5.7),c(14.4,24.75,36.45,41.6,50.8,66.3,67.7),rep(-0.5,7))
mtext(c("PPA","A","S","O","D","P"), 1, at=c(7.35,19.75,30.9,39.4,46.6,58.9), line=0.05, cex=1.4)
mtext("MC", 1, at=67.15, line=-0.05, cex=0.75, las=2, padj=0.5)
mtext(c("a","b","c","d","e","b","a"), 3, at=c(3.4, 7.35,20.25,24.25,33.3,54.1,65.83,67.15), line=0, cex=1.2)
Calculate data for TABLE S2B:
```r
# Keep only genera with a prevalence of 100% and classified to genus level
genus_prev <- as.data.frame(rowSums(genus != 0))
colnames(genus_prev) <- c("prevalence_n")
genus_prev100 <- subset(genus_prev, prevalence_n == 52 & !in% grep("Other|g__uncultured|g__uncultured_bacterium$", rownames(genus_prev), value=TRUE)))
genus100 <- subset(genus, rownames(genus) %in% rownames(genus_prev100))
rownames(genus100) <- gsub("^.*g__", "", rownames(genus100))
rownames(genus100) <- gsub("_", " ", rownames(genus100))
# Calculate genus prevalence and % relative abundance (mean, SD, minimum, and maximum)
Table_S2B <- cbind(as.data.frame(rowSums(genus100 != 0)),
                   round(as.data.frame(rowSums(genus100 != 0))/ncol(genus100)*100, 2),
                   format(as.data.frame(rowMeans(genus100)*100), digits=3, scientific=TRUE),
                   format(as.data.frame(apply(genus100, 1, sd, na.rm=TRUE)*100), digits=3, scientific=TRUE),
                   format(as.data.frame(apply(genus100, 1, min, na.rm=TRUE)*100), digits=3, scientific=TRUE),
                   format(as.data.frame(apply(genus100, 1, max, na.rm = TRUE)*100), digits=3, scientific=TRUE))
colnames(Table_S2B) <- c("prev_n", "prev", "ab_mean", "ab_sd", "ab_min", "ab_max")
Table_S2B
```
<table>
<thead>
<tr>
<th>Organism</th>
<th>prev_n</th>
<th>prev</th>
<th>ab_mean</th>
<th>ab_sd</th>
<th>ab_min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcanobacterium</td>
<td>52</td>
<td>100</td>
<td>4.16e-01</td>
<td>1.26e+00</td>
<td>3.22e-05</td>
</tr>
<tr>
<td>Mobiluncus</td>
<td>52</td>
<td>100</td>
<td>6.74e-01</td>
<td>1.36e+00</td>
<td>7.74e-05</td>
</tr>
<tr>
<td>Bifidobacterium</td>
<td>52</td>
<td>100</td>
<td>4.52e+00</td>
<td>1.05e+01</td>
<td>3.41e-04</td>
</tr>
<tr>
<td>Corynebacterium</td>
<td>52</td>
<td>100</td>
<td>9.42e-01</td>
<td>2.67e+00</td>
<td>2.41e-04</td>
</tr>
<tr>
<td>Corynebacterium 1</td>
<td>52</td>
<td>100</td>
<td>1.64e+00</td>
<td>3.77e+00</td>
<td>1.41e-03</td>
</tr>
<tr>
<td>Micrococcus</td>
<td>52</td>
<td>100</td>
<td>3.78e-01</td>
<td>7.74e-01</td>
<td>3.80e-05</td>
</tr>
<tr>
<td>Atopobium</td>
<td>52</td>
<td>100</td>
<td>5.94e-01</td>
<td>1.64e+00</td>
<td>1.26e-04</td>
</tr>
<tr>
<td>Porphyromonas</td>
<td>52</td>
<td>100</td>
<td>6.03e+00</td>
<td>5.72e+00</td>
<td>3.66e-02</td>
</tr>
<tr>
<td>Prevotella</td>
<td>52</td>
<td>100</td>
<td>5.27e-01</td>
<td>1.94e+00</td>
<td>6.66e-05</td>
</tr>
<tr>
<td>Rikenellaceae RC9 gut group</td>
<td>52</td>
<td>100</td>
<td>1.07e+00</td>
<td>2.45e+00</td>
<td>1.04e-04</td>
</tr>
<tr>
<td>Tumbbacillus</td>
<td>52</td>
<td>100</td>
<td>2.73e-02</td>
<td>5.52e-02</td>
<td>2.98e-05</td>
</tr>
<tr>
<td>Bacillus</td>
<td>52</td>
<td>100</td>
<td>9.08e-03</td>
<td>1.31e-02</td>
<td>2.47e-05</td>
</tr>
<tr>
<td>Aerococcus</td>
<td>52</td>
<td>100</td>
<td>3.05e+00</td>
<td>5.18e+00</td>
<td>3.31e-04</td>
</tr>
<tr>
<td>Eremococcus</td>
<td>52</td>
<td>100</td>
<td>9.22e-02</td>
<td>1.27e-01</td>
<td>8.95e-05</td>
</tr>
<tr>
<td>Facklamia</td>
<td>52</td>
<td>100</td>
<td>1.29e+00</td>
<td>2.42e+00</td>
<td>6.86e-04</td>
</tr>
<tr>
<td>Atopostipes</td>
<td>52</td>
<td>100</td>
<td>3.54e-01</td>
<td>5.97e-01</td>
<td>1.79e-04</td>
</tr>
<tr>
<td>Trichococcus</td>
<td>52</td>
<td>100</td>
<td>1.48e+00</td>
<td>4.39e+00</td>
<td>1.39e-04</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>52</td>
<td>100</td>
<td>2.86e+00</td>
<td>1.11e+01</td>
<td>3.31e-04</td>
</tr>
<tr>
<td>Christensenellaceae R-7 group</td>
<td>52</td>
<td>100</td>
<td>2.79e-01</td>
<td>4.05e-01</td>
<td>1.33e-03</td>
</tr>
<tr>
<td>Anaerococcus</td>
<td>52</td>
<td>100</td>
<td>2.82e+00</td>
<td>3.26e+00</td>
<td>8.13e-02</td>
</tr>
<tr>
<td>Ezakiella</td>
<td>52</td>
<td>100</td>
<td>3.04e+00</td>
<td>4.68e+00</td>
<td>1.13e-03</td>
</tr>
<tr>
<td>Helcococcus</td>
<td>52</td>
<td>100</td>
<td>1.39e+00</td>
<td>2.04e+00</td>
<td>1.37e-03</td>
</tr>
<tr>
<td>Murdochhiella</td>
<td>52</td>
<td>100</td>
<td>7.82e-02</td>
<td>1.19e-01</td>
<td>2.56e-04</td>
</tr>
<tr>
<td>Parvimonas</td>
<td>52</td>
<td>100</td>
<td>1.45e+00</td>
<td>1.63e+00</td>
<td>8.88e-04</td>
</tr>
<tr>
<td>Peptoniphilus</td>
<td>52</td>
<td>100</td>
<td>2.88e+00</td>
<td>2.54e+00</td>
<td>1.93e-01</td>
</tr>
<tr>
<td>Catonella</td>
<td>52</td>
<td>100</td>
<td>1.67e+00</td>
<td>5.18e+00</td>
<td>2.10e-04</td>
</tr>
<tr>
<td>Peptococcus</td>
<td>52</td>
<td>100</td>
<td>1.27e-01</td>
<td>1.94e-01</td>
<td>4.65e-04</td>
</tr>
<tr>
<td>Peptoclostridium</td>
<td>52</td>
<td>100</td>
<td>8.05e-01</td>
<td>1.17e+00</td>
<td>5.57e-04</td>
</tr>
<tr>
<td>Fastidiousipila</td>
<td>52</td>
<td>100</td>
<td>1.93e+00</td>
<td>3.94e+00</td>
<td>1.20e-02</td>
</tr>
<tr>
<td>Ruminococcaceae UCG-005</td>
<td>52</td>
<td>100</td>
<td>1.44e-01</td>
<td>4.34e+00</td>
<td>2.84e-05</td>
</tr>
<tr>
<td>Ruminococcaceae UCG-014</td>
<td>52</td>
<td>100</td>
<td>3.79e-01</td>
<td>5.97e-01</td>
<td>2.39e-04</td>
</tr>
<tr>
<td>Saccharofermentans</td>
<td>52</td>
<td>100</td>
<td>4.68e-02</td>
<td>6.20e-02</td>
<td>2.79e-04</td>
</tr>
<tr>
<td>Dialister</td>
<td>52</td>
<td>100</td>
<td>8.08e-01</td>
<td>1.28e+00</td>
<td>1.89e-03</td>
</tr>
<tr>
<td>Negativicoccus</td>
<td>52</td>
<td>100</td>
<td>3.64e-01</td>
<td>5.13e-01</td>
<td>3.95e-04</td>
</tr>
<tr>
<td>Fusobacterium</td>
<td>52</td>
<td>100</td>
<td>1.37e+01</td>
<td>1.32e+01</td>
<td>3.42e-03</td>
</tr>
<tr>
<td>Sneathia</td>
<td>52</td>
<td>100</td>
<td>9.11e+00</td>
<td>1.31e+01</td>
<td>6.30e-04</td>
</tr>
<tr>
<td>Sphingomonas</td>
<td>52</td>
<td>100</td>
<td>3.41e-02</td>
<td>1.17e-01</td>
<td>2.78e-05</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>52</td>
<td>100</td>
<td>4.97e+00</td>
<td>6.93e+00</td>
<td>2.40e-01</td>
</tr>
<tr>
<td>Haemophilus</td>
<td>52</td>
<td>100</td>
<td>7.26e+00</td>
<td>1.29e+01</td>
<td>7.84e-04</td>
</tr>
<tr>
<td>Treponema 2</td>
<td>52</td>
<td>100</td>
<td>5.97e+00</td>
<td>1.05e+00</td>
<td>4.53e-04</td>
</tr>
<tr>
<td>Acholeplasma</td>
<td>52</td>
<td>100</td>
<td>9.55e-01</td>
<td>1.97e+00</td>
<td>4.20e-05</td>
</tr>
<tr>
<td>Mycoplasma</td>
<td>52</td>
<td>100</td>
<td>1.25e+00</td>
<td>6.60e+00</td>
<td>1.07e-04</td>
</tr>
</tbody>
</table>

ab_max

<table>
<thead>
<tr>
<th>Organism</th>
<th>ab_max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcanobacterium</td>
<td>7.40e+00</td>
</tr>
<tr>
<td>Genera</td>
<td>Prevalence</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Mobiluncus</td>
<td>5.92e+00</td>
</tr>
<tr>
<td>Bifidobacterium</td>
<td>5.31e+01</td>
</tr>
<tr>
<td>Corynebacterium</td>
<td>1.45e+01</td>
</tr>
<tr>
<td>Corynebacterium 1</td>
<td>2.17e+01</td>
</tr>
<tr>
<td>Micrococcus</td>
<td>4.39e+00</td>
</tr>
<tr>
<td>Atopobium</td>
<td>1.03e+01</td>
</tr>
<tr>
<td>Porphyromonas</td>
<td>2.97e+01</td>
</tr>
<tr>
<td>Prevotella</td>
<td>1.24e+01</td>
</tr>
<tr>
<td>Prevotella 9</td>
<td>1.30e+01</td>
</tr>
<tr>
<td>Rikenellaceae RC9 gut group</td>
<td>1.26e+01</td>
</tr>
<tr>
<td>Tumebacillus</td>
<td>3.41e-01</td>
</tr>
<tr>
<td>Bacillus</td>
<td>5.10e-02</td>
</tr>
<tr>
<td>Aerococcus</td>
<td>2.76e+01</td>
</tr>
<tr>
<td>Eremococcus</td>
<td>7.37e-01</td>
</tr>
<tr>
<td>Facklamia</td>
<td>1.18e+01</td>
</tr>
<tr>
<td>Atopostipes</td>
<td>3.76e+00</td>
</tr>
<tr>
<td>Trichococcus</td>
<td>1.98e+01</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>6.88e+01</td>
</tr>
<tr>
<td>Christensenellaceae R-7 group</td>
<td>1.95e+00</td>
</tr>
<tr>
<td>Anaerococcus</td>
<td>1.77e+01</td>
</tr>
<tr>
<td>Ezakiella</td>
<td>2.79e+01</td>
</tr>
<tr>
<td>Helcococcus</td>
<td>9.44e+00</td>
</tr>
<tr>
<td>Murdocchiella</td>
<td>6.67e-01</td>
</tr>
<tr>
<td>Parvimonas</td>
<td>5.74e+00</td>
</tr>
<tr>
<td>Peptoniphilus</td>
<td>9.96e+00</td>
</tr>
<tr>
<td>Catonella</td>
<td>2.52e+01</td>
</tr>
<tr>
<td>Peptococcus</td>
<td>7.81e-01</td>
</tr>
<tr>
<td>Peptoclostridium</td>
<td>5.13e+00</td>
</tr>
<tr>
<td>Fastidiosipila</td>
<td>2.58e+01</td>
</tr>
<tr>
<td>Ruminococcaceae UCG-005</td>
<td>2.32e+00</td>
</tr>
<tr>
<td>Ruminococcaceae UCG-014</td>
<td>2.48e+00</td>
</tr>
<tr>
<td>Saccharofermentans</td>
<td>2.68e-01</td>
</tr>
<tr>
<td>Dialister</td>
<td>6.08e+00</td>
</tr>
<tr>
<td>Negativicoccus</td>
<td>2.69e+00</td>
</tr>
<tr>
<td>Fusobacterium</td>
<td>5.07e+01</td>
</tr>
<tr>
<td>Sneathia</td>
<td>6.69e+01</td>
</tr>
<tr>
<td>Sphingomonas</td>
<td>7.95e-01</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>3.35e+01</td>
</tr>
<tr>
<td>Haemophilus</td>
<td>6.81e+01</td>
</tr>
<tr>
<td>Treponema 2</td>
<td>5.41e+00</td>
</tr>
<tr>
<td>Acholeplasma</td>
<td>1.01e+01</td>
</tr>
<tr>
<td>Mycoplasma</td>
<td>4.76e+01</td>
</tr>
</tbody>
</table>

How many bacterial genera have a prevalence of 100%?

nrow(Table_S2B)
FIGURE 2B:
Subset out genera that have >1% mean relative abundance
mean_g <- data.frame(ab_mean=rowMeans(genus)*100)
mean_g1 <- subset(mean_g, (ab_mean >= 1) & (rownames(mean_g) != "Unassigned;Other;Other;Other;Other;Other"))
mean_g2 <- mean_g[order(-mean_g$ab_mean), , drop = FALSE]
genus_1 <- droplevels(subset(genus, rownames(genus) %in% rownames(mean_g2)))
genus_1 <- genus_1[match(rownames(mean_g2), rownames(genus_1)),]

Combine bacterial genera with <1% relative abundance

genus_mean_low <- droplevels(subset(mean_g, ab_mean < 1))
bacteria_mean_low <- subset(genus_mean_low, (row(genus_mean_low) %in% grep("k__Bacteria;", rownames(genus_mean_low))) & (rownames(genus_mean_low) != "k__Bacteria;Other;Other;Other;Other;Other"))
bacteria_low <- colSums(droplevels(subset(genus, rownames(genus) %in% rownames(bacteria_mean_low))))
bacteria_unclass <- colSums(droplevels(subset(genus, rownames(genus) == "k__Bacteria;Other;Other;Other;Other;Other")))

Combine archaea genera
archaea_mean <- subset(genus_mean_low, row(genus_mean_low) %in% grep("k__Archaear;", rownames(genus_mean_low)))
archaea <- colSums(droplevels(subset(genus, rownames(genus) %in% rownames(archaea_mean))))

Grep unclassified row
unclassified <- genus["Unassigned;Other;Other;Other;Other;Other",]

Combine

genus1 <- rbind(genus_1, bacteria_low, bacteria_unclass, archaea, unclassified)
rownames(genus1) <- c(rownames(genus_1), "Low abundance Bacteria (mean < 1)", "Unclassified Bacteria", "Archaear", "Unclassified kingdom")
genus2 <- as.matrix(genus1*100)

Shorten row names
rownames(genus2) <- gsub("k__Bacteria;p__Fusobacteria;c__Fusobacteriaia;o__Fusobacteriales;f__Leptotrichiaceae;Other", "Unclassified Leptotrichiaceae", rownames(genus2))
rownames(genus2) <- sub(".*g__", "", rownames(genus2))
rownames(genus2) <- sub("_", "", rownames(genus2))
rownames(genus2) <- sub("RC9_gut_group", "RC9 gut group", rownames(genus2))

Order samples by reproductive state and cycle phase
Figure_2B <- t(t(genus2)[match(rownames(metal), rownames(t(genus2)))]

Heatmap
library(gplots)
library(RColorBrewer)
my_palette <- colorRampPalette(rev(brewer.pal(11,"Spectral")))(99)
my_breaks <- c(seq(-4,-2,length=20), seq(-1.99,1,length=60), seq(1.01,2,length=20))
layout(matrix(c(2,1), 1, 2), widths=c(5, 5))
par oma=c(0,1,0,5)
heatmap.2(log10(Figure_2B[c(1:22),]), Rowv=TRUE, Colv=FALSE, dendrogram="none",

14 of 74
What is the prevalence and relative abundance of *Lactobacillus* spp.?

```r
# Prevalence
lacto <- t(genus[grep(".*;g__Lactobacillus", rownames(genus)), ])
sum(lacto != 0)/nrow(lacto)*100
```
What is the relative abundance of the order Lactobacillales?

```r
lactol <- order[grep(".*;o__Lactobacillales", rownames(order)), ]
# Mean relative abundance
rowMeans(lactol)*100
```

```
## k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales
##                                                10.41283
```

What percentage of OTUs could not be classified beyond the kingdom level?

```r
library(splitstackshape) #version 1.4.2
otul <- as.data.frame(cSplit(otu, "taxonomy", sep=';'))
rownames(otul) <- rownames(otu)
unclass <- subset(otul, !is.na(taxonomy_1) & is.na(taxonomy_2))
nrow(unclass)/nrow(otu)*100
```

```
## [1] 11.80084
```

What percentage of total reads were from unclassified OTUs?

```r
sum(unclass[1:52])/sum(otu[1:52])*100
```
What percentage of unclassified OTUs appear in more than one sample?

```r
# Use OTU table with all OTUs (not just those that occur in more than one sample)
otu_all_unclass <- subset(oetu_all, rownames(oetu_all) %in% rownames(unclass))
unclass_prev <- as.data.frame(rowSums(oetu_all_unclass[1:52] > 0), drop=FALSE)
names(unclass_prev) <- "prevalence"
nrow(subset(unclass_prev, prevalence > 1))/nrow(unclass)*100
```

[1] 100

How does the prevalence distribution of unclassified OTUs compare to the distribution of classified OTUs?

```r
# Distribution of classified OTU prevalence
class_prev <- as.data.frame(rowSums(oetu[1:52] > 0))
hist(class_prev[,1], breaks=16, ylab='Relative frequency of classified OTUs', xlab='Prevalence of classified OTUs', main=NA, col="gray", cex.axis=1.5, cex.lab =1.25, freq=FALSE, ylim=c(0,0.08))
```
Distribution of classified OTU prevalence

unclass_prev <- as.data.frame(rowSums(unclass[1:52] > 0))

hist(unclass_prev[,1], breaks=16, ylab='Relative frequency of unclassified OTUs', xlab='Prevalence of unclassified OTUs', main=NA, col="gray", cex.axis=1.5, cex.lab=1.25, freq=FALSE, ylim=c(0,0.08))
Alpha diversity

What host factors predict alpha diversity?
We constructed multivariate linear regression models for both OTU richness and Shannon's diversity index. The following factors were fixed effects: sequencing read count (to control for variation in sequencing depth between samples), age, reproductive state or ovarian cycle phase, dominance rank, presence or absence of rainfall in the 30 days prior to sample collection, the number of individuals in a female’s social group at sample collection (i.e. social group size), and level of promiscuity, estimated using the average number of consortship partners per ovarian cycle.
Calculate OTU richness and Shannon's diversity index
library(vegan) #version 2.4-0
library(plyr) #version 1.8.4
otu_matrix <- t(as.matrix(otu[1:52]))
richness <- data.frame(richness=specnumber(otu_matrix), rn=row.names(otu_matrix))
shannon <- data.frame(diversity(otu_matrix, index="shannon", base=2), rn=row.names(otu_matrix))
colnames(shannon) <- c("shannon", "rn")
metal <- join_all(list(data.frame(meta, rn=row.names(meta)), richness, shannon), by="rn", type='full')
rownames(metal) <- metal$rn
metal$rn <- NULL

Should we include baboon ID as a random effect in the alpha diversity linear regression models?

Four baboons were sampled twice.
Do samples from the same baboon have more similar alpha diversity?

Dataframe of all possible sample dyads:

```r
bid <- data.frame(sname=meta$baboon_id)
bid_gower <- daisy(bid, metric="gower")

# Control alpha diversity for read count, reproductive state, and cycle phase.

meta1$"rep_cycle" <- ifelse(meta1$rep_state=="MC","MC",ifelse(meta1$rep_state=="P","P",ifelse(meta1$cycle_phase=="PPA","PPA",ifelse(meta1$cycle_phase=="S","S",ifelse(meta1$cycle_phase=="O","O","D")))))
meta1$"richness_residuals" <- residuals(lm(richness ~ read_count + rep_cycle, data=meta))
meta1$"shannon_residuals" <- residuals(lm(shannon ~ read_count + rep_cycle, data=meta))

all_dyads1 <- merge(all_dyads, meta[,c("richness_residuals", "shannon_residuals")], by.x="sample_id1", by.y="row.names")
all_dyads2 <- merge(all_dyads1, meta[,c("richness_residuals", "shannon_residuals")], by.x="sample_id2", by.y="row.names")

all_dyads2$"richness" <- abs(all_dyads2$richness_residuals.x-all_dyads2$richness_residuals.y)
all_dyads2$"shannon" <- abs(all_dyads2$shannon_residuals.x-all_dyads2$shannon_residuals.y)

# Because sample sizes are not equal, use Wilcoxon rank-sum tests (Mann–Whitney U tests)

wilcox.test(all_dyads2$"richness" ~ all_dyads2$same_baboon)

wilcox.test(all_dyads2$"shannon" ~ all_dyads2$same_baboon)
```
Based on Wilcoxon rank sum tests (Mann–Whitney U tests), samples from the same baboon are no more similar to each other in terms of alpha diversity than samples from different baboons.

FIGURE S2

```r
library(reshape) #version 0.8.5
library(ggplot2) #version 2.1.0
all_dyads_melt <- melt(all_dyads2[,c("sample_id1", "sample_id2","same_baboon","richness","shannon")])
all_dyads_melt$variable <- gsub("richness", "OTU\nRichness", all_dyads_melt$variable)
all_dyads_melt$variable <- gsub("shannon", "Shannon's\nDiversity", all_dyads_melt$variable)
ggplot(data=all_dyads_melt, aes(x=variable, y=value)) +
  geom_boxplot(aes(fill=same_baboon), width=0.75, position=position_dodge(0.75)) +
  facet_wrap(~ variable, scales="free", ncol=5) +
  ylab("Absolute difference in alpha diversity (residuals)") + xlab("") +
  theme(plot.background=element_blank(), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.border=element_rect(fill=NA, colour="black", size=1), panel.background=element_blank(), axis.line=element_blank(), legend.position="right", axis.title.x=element_text(color="black", size=16), axis.title.y=element_text(color="black", size=16, hjust=0.25), axis.text.x=element_blank(), axis.text.y=element_text(size=14, lineheight=0.9, colour="black"), strip.text.x=element_text(size=12, colour="black"), legend.text=element_text(size=14), legend.background=element_rect(fill="white", size=.5, linetype="solid", color="black"), legend.title=element_blank()) +
  scale_fill_manual(values=c("white","gray"), labels=c("Same Individual","Different Individual"), name="")
```
library(MASS) #version 7.3-45
Remove the female who is miscarrying
meta_noMC <- droplevels(subset(meta1, rep_state != "MC"))
Scale numerical factors
meta_noMC$age.scaled <- as.numeric(scale(meta_noMC$age, scale=TRUE))
meta_noMC$absolute_rank.scaled <- as.numeric(scale(meta_noMC$absolute_rank, scale=TRUE))
meta_noMC$read_count.scaled <- as.numeric(scale(meta_noMC$read_count, scale=TRUE))
meta_noMC$social grp size.scaled <- as.numeric(scale(meta_noMC$social grp size, scale=TRUE))
meta_noMC$promiscuity.scaled <- as.numeric(scale(meta_noMC$promiscuity, scale=TRUE))
Linear regression for OTU richness
lm_full_R <- lm(richness ~ (read_count.scaled + age.scaled + rep_state + rainfall + absolute_rank.scaled + promiscuity.scaled + social grp size.scaled), data=meta_noMC)
stepAIC(lm_full_R, direction="backward", trace=0)
Call:
lm(formula = richness ~ read_count.scaled + rainfall, data = meta_noMC)
##
Coefficients:
(Intercept) read_count.scaled rainfallR
2932.2 563.1 -467.6

Final model for OTU richness
summary(lm(richness ~ (read_count.scaled + rainfall), data=meta_noMC))

Call:
lm(formula = richness ~ (read_count.scaled + rainfall), data = meta_noMC)
##
Residuals:
Min 1Q Median 3Q Max
##-1223.23 -350.77 -91.13 253.08 1727.37
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2932.2 128.8 22.76 <2e-16 ***
read_count.scaled 563.1 89.5 6.29 8.98e-08 ***
rainfallR -467.6 177.6 -2.63 0.011 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 628.8 on 48 degrees of freedom
Multiple R-squared: 0.474, Adjusted R-squared: 0.452
F-statistic: 21.66 on 2 and 48 DF, p-value: 1.977e-07

Linear regression for Shannon's diversity index
lm_full_H <- lm(shannon ~ (read_count.scaled + age.scaled + rep_state + rainfall + absolute_rank.scaled + promiscuity.scaled + social_grp_size.scaled), data=meta_noMC)
stepAIC(lm_full_H, direction="backward", trace=0)
Call:
```
lm(formula = shannon ~ read_count.scaled + rep_state + rainfall +
    promiscuity.scaled + social_grp_size.scaled, data = meta_noMC)
```
Coefficients:
```
            (Intercept)       read_count.scaled              rep_stateC
      5.5979                  0.4157                 -1.7263
     rep_stateP               rainfallR      promiscuity.scaled
    -0.9182                 -0.3319                 -0.1525
social_grp_size.scaled
    -0.3014
```

```
summary(lm(shannon ~ (read_count.scaled + age.scaled + rep_state + rainfall + a
bsolute_rank.scaled + promiscuity.scaled + social_grp_size.scaled), data=meta_n
oMC))
```
Call:
```
lm(formula = shannon ~ (read_count.scaled + age.scaled + rep_state + 
    rainfall + absolute_rank.scaled + promiscuity.scaled + social_grp_size.s
caled), 
    data = meta_noMC)
```
Residuals:
```
     Min      1Q  Median      3Q     Max
-1.4969 -0.4512 -0.1016  0.4630  1.4915
```
Coefficients:
```
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)         5.59870   0.25755  21.739  < 2e-16 ***
read_count.scaled  0.41445   0.12874   3.219  0.00248 **
age.scaled        -0.02778   0.11521  -0.241  0.81062
rep_stateC        -1.71574   0.31412  -5.462 2.35e-06 ***
rep_stateP        -0.94702   0.31904  -2.968  0.00493 **
fallR             -0.33144   0.21968  -1.509  0.13885
absolute_rank.scaled -0.05910  0.13095  -0.451  0.65406
promiscuity.scaled  -0.16246  0.11617  -1.399  0.16929
social_grp_size.scaled -0.26448  0.13173  -2.008  0.05113 .
```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7478 on 42 degrees of freedom
Multiple R-squared: 0.5499, Adjusted R-squared: 0.4642
F-statistic: 6.414 on 8 and 42 DF, p-value: 1.976e-05

Remove age, rainfall, absolute rank, and promiscuity because Pr(|t|) > 0.05
What happens to social group size, which is borderline significant?
summary(lm(shannon ~ (read_count.scaled + rep_state + social_grp_size.scaled),
data=meta_noMC))
Call:
`lm(formula = shannon ~ (read_count.scaled + rep_state + social_grp_size.scaled), data = meta_noMC)`

Residuals:
| Min | 1Q | Median | 3Q | Max |
|-----|----|--------|----|-----|
| -1.3437 | -0.5043 | -0.1276 | 0.5277 | 1.6622 |

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|----------|------------|---------|----------|
| (Intercept) | 5.4309 | 0.2366 | 22.954 | < 2e-16 *** |
| read_count.scaled| 0.3761 | 0.1247 | 3.016 | 0.00417 ** |
| rep_stateC | -1.7188 | 0.2969 | -5.789 | 5.99e-07 *** |
| rep_stateP | -0.9724 | 0.3114 | -3.122 | 0.00310 ** |
| social_grp_size.scaled | -0.3252 | 0.1094 | -2.972 | 0.00470 ** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7448 on 46 degrees of freedom
Multiple R-squared: 0.511, Adjusted R-squared: 0.4684
F-statistic: 12.02 on 4 and 46 DF, p-value: 9.128e-07

Calculate data for TABLE S4:

```r
meta_C <- droplevels(subset(meta_noMC, rep_state == "C"))
# Linear regression for OTU richness
lm_full_R_C <- lm(richness ~ (read_count.scaled + age.scaled + cycle_phase + rainfall + absolute_rank.scaled + promiscuity.scaled + social_grp_size.scaled), data=meta_C)
stepAIC(lm_full_R_C, direction="backward", trace=0)
```

Call:
`lm(formula = richness ~ read_count.scaled + cycle_phase + rainfall, data = meta_C)`

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|----------|------------|---------|----------|
| (Intercept) | 3288.52 | 721.47 | -731.57 | |
| read_count.scaled| 31.95 | -863.91 | -325.83 | |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7448 on 46 degrees of freedom
Multiple R-squared: 0.511, Adjusted R-squared: 0.4684
F-statistic: 12.02 on 4 and 46 DF, p-value: 9.128e-07
```r
summary(lm(richness ~ (read_count.scaled + cycle_phase + rainfall), data=meta_C))
```

```r
## Call:
## lm(formula = richness ~ (read_count.scaled + cycle_phase + rainfall),
##     data = meta_C)
##
## Residuals:
##      Min       1Q   Median       3Q      Max
## -1236.06  -288.07   -38.04   217.52  1842.66
##
## Coefficients:  
##                Estimate Std. Error t value Pr(>|t|)
## (Intercept)     3288.52     273.05  12.044 3.71e-11 ***
## read_count.scaled   721.47     135.92   5.308 2.51e-05 ***
## cycle_phaseS      -731.57     363.92  -2.010   0.0568 .
## cycle_phaseO       31.95     399.16   0.080   0.9369
## cycle_phaseD     -863.91     364.71  -2.369   0.0270 *
## rainfallR        -325.83     254.92  -1.278   0.2145
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 622.2 on 22 degrees of freedom
## Multiple R-squared:  0.6182, Adjusted R-squared:  0.5315
## F-statistic: 7.125 on 5 and 22 DF,  p-value: 0.0004245

# Remove rainfall from final model because Pr(|t|) > 0.05
# Final model for OTU richness
summary(lm(richness ~ (read_count.scaled + cycle_phase), data=meta_C))
```
Call:
`lm(formula = richness ~ (read_count.scaled + cycle_phase), data = meta_C)`

Residuals:
```
      Min 1Q Median 3Q Max
-1049.02 -235.07 24.79 160.59 2047.47
```

Coefficients:
```
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)         3093.7      229.6  13.472 2.13e-12 ***
read_count.scaled    743.4      136.7   5.439 1.58e-05 ***
cycle_phaseS        -777.6      367.1  -2.118   0.0452 *
cycle_phaseO         140.5      395.4   0.356   0.7255
cycle_phaseD        -920.0      367.0  -2.507   0.0197 *
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 630.7 on 23 degrees of freedom
Multiple R-squared: 0.5899, Adjusted R-squared: 0.5186
F-statistic: 8.27 on 4 and 23 DF, p-value: 0.0002752

Linear regression for Shannon's diversity index
```
lm_full_H_C <- lm(shannon ~ (read_count.scaled + age.scaled + cycle_phase + rainfall + absolute_rank.scaled + promiscuity.scaled + social_grp_size.scaled), data=meta_C)
stepAIC(lm_full_H_C, direction="backward", trace=0)
```

Call:
```
lm(formula = shannon ~ read_count.scaled + cycle_phase + social_grp_size.scaled, data = meta_C)
```

Coefficients:
```
                      (Intercept)  read_count.scaled  cycle_phaseS
                      4.3547         0.5835         -1.0160
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Final model for Shannon's diversity index
```
summary(lm(shannon ~ (read_count.scaled + cycle_phase + social_grp_size.scaled), data=meta_C))
```
Call: lm(formula = shannon ~ (read_count.scaled + cycle_phase + social_grp_size.scaled), data = meta_C)

Residuals:

 Min 1Q Median 3Q Max
-1.2726 -0.2955 0.0912 0.2415 0.7878

Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.3547 0.1866 23.333 < 2e-16 ***
read_count.scaled 0.5835 0.1116 5.230 3.03e-05 ***
cycle_phaseS -1.0160 0.3003 -3.383 0.002678 **
cycle_phaseO -0.7118 0.3219 -2.212 0.037691 *
cycle_phaseD -1.2716 0.2982 -4.264 0.000317 ***
social_grp_size.scaled -0.2943 0.1049 -2.806 0.010294 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5116 on 22 degrees of freedom
Multiple R-squared: 0.6255, Adjusted R-squared: 0.5403
F-statistic: 7.348 on 5 and 22 DF, p-value: 0.0003492

FIGURE 3:

library(graphics) #version 3.2.2

Panel A
meta_noMC$rep_state <- factor(meta_noMC$rep_state, c("C","P","PPA"))
meta_C$cycle_phase <- factor(meta_C$cycle_phase, c("A","S","O","D"))

bxpl_R <- boxplot(meta_noMC$shannon ~ meta_noMC$rep_state)

bxpl_C <- boxplot(meta_C$shannon ~ meta_C$cycle_phase)
```r
bxp(bxp1_R, ylab="Shannon's Diversity Index", ylim=c(2,8), xlim=c(0.5,8.5), boxwex=0.5, cex.axis=1.25, cex.lab=1.5, boxfill= c("darkturquoise", "darkorange", "purple"), at=c(1,2,3))

bxp(bxp1_C, ylab="", ylim=c(2,8), xlim=c(0.5,8.5), boxwex=0.5, cex.axis=1.25, cex.lab=1.5, boxfill= c("red", "gold3", "#33A02C", "blue"), at=c(5,6,7,8), add=TRUE)

abline(v=4, lty=2, lwd=2)
segments(1,7.9,2,7.9, col="black", lwd=2.5) # C vs. P
text(x=1.5,y=8.05, labels="*", cex=2) # C vs. P
segments(1,7.45,3,7.45, col="black", lwd=2.5) # C vs. PPA
text(x=2,y=7.6, labels="***", cex=2) # C vs. PPA
segments(2,7,3,7, col="black", lwd=2.5) # P vs. PPA
text(x=2.5,y=7.15,labels="***", cex=2) # P vs. PPA
segments(5,5.4,6,5.4, col="black", lwd=2.5) # A vs. S
text(x=5.5,y=5.55,labels="**", cex=2) # A vs. S
segments(5,5.85,7,5.85, col="black", lwd=2.5) # A vs. O
text(x=6,y=6, labels="*", cex=2) # A vs. O
segments(5,6.3,8,6.3, col="black", lwd=2.5) # A vs. D
text(x=6.5,y=6.45, labels="***", cex=2) # A vs. D
mtext("A", side=3, at=c(-1), line=0, cex=2, font=2)
```
Panel B

```r
plot(meta_C$richness ~ meta_C$cycle_phase, pch=20, xlab=NA, ylab="OTU Richness", ylim=c(0,7000), boxwex=0.5, cex.axis=1.25, cex.lab=1.5, col= c("red", "gold3", 
"#33A02C", "blue"))
segments(1,6850,4,6850, col="black",lwd=2.5) #A vs. D
text(x=2.5,y=7000,labels="*",cex=2) #A vs. D
segments(3,5750,4,5750, col="black",lwd=2.5) #O vs. D
text(x=3.5,y=5900,labels="*",cex=2) #O vs. D
segments(1,6514,2,6514, col="black",lwd=2.5) #A vs. S
text(x=1.5,y=6664,labels="*",cex=2) #A vs. S
segments(2,6086,3,6086, col="black",lwd=2.5) #S vs. O
text(x=2.5,y=6236,labels="*",cex=2) #S vs. O
mtext("B", side=3, at=c(-0.25), line=0, cex=2, font=2)
```
Panel C

```r
plot(meta_noMC$shannon ~ meta_noMC$social_grp_size, pch=20, xlab="Social Group Size", ylab="Shannon's Diversity Index", cex.axis=1.25, cex.lab=1.5, xlim=c(20, 120), ylim=c(2, 7))
abline(lm(meta_noMC$shannon ~ meta_noMC$social_grp_size), col="black")
mtext("C", side=3, at=c(0), line=0, cex=2, font=2)
```
Panel D

```r
plot(meta_noMC$richness ~ meta_noMC$rainfall, pch=20, xlab="Rainfall in Past 30 Days", ylab="OTU Richness", names=c("No Rainfall", "Rainfall"), ylim=c(0,7000), boxwex=0.5, cex.axis=1.25, cex.lab=1.5, col=c("burlywood4", "darkgreen"))
segments(1,6250,2,6250, col="black", lwd=2.5)
text(x=1.5,y=6500,labels="*",cex=2)
mtext("D", side=3, at=c(0.1), line=0, cex=2, font=2)
```
FIGURE S4:

```r
meta_P <- droplevels(subset(meta_noMC, rep_state == "P"))
# Control for read count
plot(meta_P$preg_day, lm(shannon ~ read_count, data=meta_P)$residuals, xlab="Days into Pregnancy", ylab="Shannon's Diversity Index (residuals)", pch=19, xlim=c(0,100), cex.lab=1.5, cex.axis=1.5)
abline(lm(lm(shannon ~ read_count, data=meta_P)$residuals ~ preg_day, data=meta_P), col="black")
```
Do females in larger social groups experience more consortships and consortship partners per ovarian cycle than females in smaller groups?

We used behavioral data on all mature females present within the Amboseli Baboon Research Project study population between 2007 and 2010. For each ovarian cycle of each female (i.e. beginning of the swelling phase to the end of the deturgescence phase), we calculated the number of observed consortships and the number of distinct consortship partners.
The number of observations can depend on the number of observers concurrently watching a group and the number of times a group was visited. Thus, we controlled for differences in observation intensity by using a proxy of a group's true observer effort: the number of focal animal samples that occurred in the group during a female’s ovarian cycle divided by the average group size during the same time period.

```r
library(lme4) #version 1.1-12
all_consort$"obs_effort" <- all_consort$focal_samples/all_consort$avg_grp_size
# Scale all factors
all_consort$"obs_effort.scaled" <- scale(all_consort$obs_effort)
all_consort$"avg_grp_size.scaled" <- scale(all_consort$avg_grp_size)
all_consort$"consorter_count.scaled" <- scale(all_consort$consorter_count)
all_consort$"consort_count.scaled" <- scale(all_consort$consort_count)
# Relationship between number of consortships and social group size
summary(glmer(consort_count ~ (avg_grp_size.scaled + obs_effort.scaled) + (1|ba boon_id), family="poisson", data=all_consort))
```
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod]
Family: poisson (log)
Formula: consort_count ~ (avg_grp_size.scaled + obs_effort.scaled) + (1 | baboon_id)
Data: all_consort
###
AIC BIC logLik deviance df.resid
4335.1 4354.4 -2163.6 4327.1 909
###
Scaled residuals:
Min 1Q Median 3Q Max
-3.0028 -0.9788 -0.2694 0.7178 7.2603
###
Random effects:
Groups Name Variance Std.Dev.
baboon_id (Intercept) 0.4489 0.67
Number of obs: 913, groups: baboon_id, 117
###
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.94619 0.06850 13.81 <2e-16 ***
avg_grp_size.scaled 0.51308 0.05046 10.17 <2e-16 ***
obs_effort.scaled 0.31730 0.02170 14.62 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
###
Correlation of Fixed Effects:
(Intr) avg__.
avg_grp_sz. -0.122
obs_ffrt.sc -0.051 0.330

Relationship between number of unique consortship partners and social group size
summary(glmer(consorter_count ~ (avg_grp_size.scaled + obs_effort.scaled) + (1| baboon_id), family="poisson", data=all_consort))
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod]
Family: poisson (log)
Formula: consorter_count ~ (avg_grp_size.scaled + obs_effort.scaled) +
(1 | baboon_id)
Data: all_consort
##
AIC BIC logLik deviance df.resid
2844.9 2864.2 -1418.5 2836.9 909
##
Scaled residuals:
Min 1Q Median 3Q Max
-1.6158 -0.7372 -0.1344 0.5503 3.8244
##
Random effects:
Groups Name Variance Std.Dev.
baboon_id (Intercept) 0.1688 0.4109
Number of obs: 913, groups: baboon_id, 117
##
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.42246 0.04981 8.482 < 2e-16 ***
avg_grp_size.scaled 0.27899 0.05105 5.465 4.62e-08 ***
obs_effort.scaled 0.16616 0.03474 4.783 1.72e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Correlation of Fixed Effects:
(Intr) avg__.
avg_grp_sz. -0.122
obs_ffrt.sc -0.060 0.499

FIGURE S5
Control for observer effort and baboon_id

```r
par(mfrow=c(1,2))

# Panel A
plot(glm_consort_residuals ~ all_consort$avg_grp_size, xlab="Social group size", ylab="No. of consortships (residuals)", pch=19, cex.lab=1.25, cex.axis=1.25, xlim=c(20,120))
abline(lm(glm_consort_residuals ~ all_consort$avg_grp_size), col="black")
mtext("A", side=3, at=c(-2), line=0.5, cex=2, font=2)

# Panel B
plot(glm_consorter_residuals ~ all_consort$avg_grp_size, xlab="Social group size", ylab="No. of unique consortship partners (residuals)", pch=19, cex.lab=1.25, cex.axis=1.25, xlim=c(20,120), ylim=c(-3,3))
abline(lm(glm_consorter_residuals ~ all_consort$avg_grp_size), col="black")
mtext("B", side=3, at=c(-2), line=0.5, cex=2, font=2)
```

Beta diversity

Should we account for baboon ID in beta diversity analyses?

Four baboons were sampled twice.
library(cluster) #version 2.0.4
library(reshape) #version 0.8.5

Are samples from the same baboon more similar?
Dataframe of all possible sample dyads:
all_dyads <- data.frame(t(combn(row.names(sid), 2)), as.factor(as.numeric(bid_go
we)))
names(all_dyads) <- c("sample_id1", "sample_id2", "same_baboon")
r <- melt(as.matrix(daisy(data.frame(rep=metal$rep_cycle, row.names=rownames(me
tal)), metric="gower")))
colnames(r) <- c("sample_id1", "sample_id2", "same_rep")

Dissimilarity matrices
bray_melt <- melt(data.matrix(bray))
colnames(bray_melt) <- c("sample_id1", "sample_id2", "bray")
unifrac_melt <- melt(data.matrix(unifrac))
colnames(unifrac_melt) <- c("sample_id1", "sample_id2", "unifrac")
all_dyads1 <- join_all(list(all_dyads, bray_melt, unifrac_melt, r), by=c("sampl
e_id1","sample_id2"))

Control for reproductive state and cycle phase
bray_residuals <- residuals(lm(all_dyads1$bray ~ all_dyads1$same_rep))
unifrac_residuals <- residuals(lm(all_dyads1$unifrac ~ all_dyads1$same_rep))
all_dyads2 <- cbind(all_dyads1, bray_residuals, unifrac_residuals)

Because sample sizes are not equal, use Wilcoxon rank-sum tests (Mann–Whitney
U tests)
Bray-Curtis dissimilarity
wilcox.test(all_dyads2$bray_residuals ~ all_dyads2$same_baboon)

Wilcoxon rank sum test with continuity correction
data: all_dyads2$bray_residuals by all_dyads2$same_baboon
W = 1717, p-value = 0.2257
alternative hypothesis: true location shift is not equal to 0

Weighted UniFrac distance
wilcox.test(all_dyads2$unifrac_residuals ~ all_dyads2$same_baboon)

Wilcoxon rank sum test with continuity correction
data: all_dyads2$unifrac_residuals by all_dyads2$same_baboon
W = 1993, p-value = 0.395
alternative hypothesis: true location shift is not equal to 0

Based on Wilcoxon rank sum tests (Mann–Whitney U tests), samples from the same baboon are no
more similar to each other than samples from different baboons.

FIGURE S3
library(labdsv) #version 1.8-0
library(vegan) #version 2.4-1

Panel A
bray.pcoa <- pco(as.matrix(bray), k=3)
bray.var_pco1 <- (bray.pcoa$eig[1]/sum(bray.pcoa$eig))*100
bray.var_pco2 <- (bray.pcoa$eig[2]/sum(bray.pcoa$eig))*100
bray.points <- data.frame(bray.pcoa=bray.pcoa$points[,1], bray.pco2=bray.pcoa$points[,2])
meta2 <- merge(metal, bray.points, by="row.names")
rownames(meta2) <- meta2$Row.names
meta2$Row.names <- NULL
layout(matrix(c(1,2,3,4), 2, 2, byrow = TRUE), widths=c(2, 1.5))
xpd=NA
plot(meta2$bray.pco1, meta2$bray.pco2, xlab=paste("PCO 1 (","signif(bray.var_pco1),",", signif(bray.var_pco2), ",")",sep=""),ylab=paste("PCO 2 (","signif(bray.var_pco1,2),",")",sep=""), pch =ifelse(meta2$baboon_id="B1", 19, ifelse(meta2$baboon_id="B2",19, ifelse(meta2$baboon_id="B3", 19, ifelse(meta2$baboon_id="B4", 19, 1))))), col=ifelse(meta2$baboon_id="B1", "red", ifelse(meta2$baboon_id="B2","blue", ifelse(meta2$baboon_id="B3", ","33A02C", ifelse(meta2$baboon_id="B4", "orange", "black")))))
lim=c(-0.6,0.6), ylim=c(-0.4,0.4), cex.lab=1.5, cex.axis=1.5, cex=2)
text("A", x=-0.59, y=0.39, cex=2, font=2)

Panel B
boxplot(all_dyads2$bray_residuals ~ all_dyads2$same_baboon, ylim=c(-0.6,0.6), cex.axis=1.5, cex.lab=1.5, ylab="Microbiota Bray-Curtis dissimilarity (residuals)", boxwex=0.5, pch=3, xaxt="n")
axis(1, at=c(1,2), labels=c("Same\nIndividual", "Different\nIndividuals"), cex.axis=1.5, cex.lab=1.5, mgp=c(3,0.5,0), padj=1)
text("B", x=0.55, y=0.58, cex=2, font=2)

Panel C
unifrac.pcoa <- pco(as.matrix(unifrac), k=3)
unifrac.var_pco1 <- (unifrac.pcoa$eig[1]/sum(unifrac.pcoa$eig))*100
unifrac.var_pco2 <- (unifrac.pcoa$eig[2]/sum(unifrac.pcoa$eig))*100
unifrac.points <- data.frame(unifrac.pcoa=unifrac.pcoa$points[,1], unifrac.pco2 =unifrac.pcoa$points[,2])
meta3 <- merge(metal, unifrac.points, by="row.names")
rownames(meta3) <- meta3$Row.names
meta3$Row.names <- NULL
plot(meta3$unifrac.pco1, meta3$unifrac.pco2, xlab=paste("PCO 1 (","signif(unifrac .var_pco1,2),",")",sep=""),ylab=paste("PCO 2 (","signif(unifrac.var_pco2,2),",")", sep=""), pch=ifelse(meta3$baboon_id="B1", 19, ifelse(meta3$baboon_id="B2",19, ifelse(meta3$baboon_id="B3", 19, ifelse(meta3$baboon_id="B4", 19, 1))))), col =ifelse(meta3$baboon_id="B1", "red", ifelse(meta3$baboon_id="B2","blue", ifelse(meta3$baboon_id="B3", ","33A02C", ifelse(meta3$baboon_id="B4", "orange", "black")))))
xlim=c(-0.6,0.6), ylim=c(-0.4,0.4), cex.lab=1.5, cex.axis=1.5, cex=2)
text("C", x=-0.59, y=0.39, cex=2, font=2)
Panel D

```r
boxplot(all_dyads$unifrac_residuals ~ all_dyads$same_baboon, ylim=c(-0.6,0.6), cex.axis=1.5, cex.lab=1.5, ylab="Microbiota weighted UniFrac (residuals)", boxwex=0.5, pch=3, xaxt="n")
axis(1, at=c(1,2), labels=c("Same\nIndividual", "Different\nIndividuals"), cex.axis=1.5, cex.lab=1.5, mgp=c(3,0.5,0), padj=1)
text("D", x=0.55, y=0.58, cex=2, font=2)
```
What host factors predict beta diversity?

We performed PERMANOVAs using Bray-Curtis dissimilarity and weighted UniFrac distance to identify predictors of vaginal microbial dissimilarity between samples.
library(vegan) #version 2.4-1
bray_noMC <- bray[rownames(bray) %in% rownames(meta_noMC), colnames(bray) %in% rownames(meta_noMC)]
unifrac_noMC <- unifrac[rownames(unifrac) %in% rownames(meta_noMC), colnames(unifrac) %in% rownames(meta_noMC)]

Make sure dissimilarity matrices and metadata dataframe are in the same order
bray_noMC_ordered <- bray_noMC[match(rownames(meta_noMC), rownames(bray_noMC)), match(rownames(meta_noMC), colnames(bray_noMC))]
unifrac_noMC_ordered <- unifrac_noMC[match(rownames(meta_noMC), rownames(unifrac_noMC)), match(rownames(meta_noMC), colnames(unifrac_noMC))]

PERMANOVAs: reproductive state
adonis(bray_noMC_ordered ~ meta_noMC$rep_state, permutations=10000, method="bray")$aov.tab

Permutation: free
Number of permutations: 10000
##
Terms added sequentially (first to last)
##
Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
meta_noMC$rep_state 2 2.8878 1.44388 5.2415 0.17925 9.999e-05 ***
Residuals 48 13.2225 0.27547 0.82075
Total 50 16.1103 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

adonis(unifrac_noMC_ordered ~ meta_noMC$rep_state, permutations=10000)$aov.tab

Permutation: free
Number of permutations: 10000
##
Terms added sequentially (first to last)
##
Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
meta_noMC$rep_state 2 1.1493 0.57464 5.8078 0.19484 9.999e-05 ***
Residuals 48 4.7493 0.09894 0.80516
Total 50 5.8985 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Repeat PERMANOVAs on just cycling females (n=28)

```r
bray_C <- bray[rownames(bray) %in% rownames(meta_C), colnames(bray) %in% rownames(meta_C)]
unifrac_C <- unifrac[rownames(unifrac) %in% rownames(meta_C), colnames(unifrac) %in% rownames(meta_C)]
bray_C_ordered <- bray_C[match(rownames(meta_C), rownames(bray_C)), match(rownames(meta_C), colnames(bray_C))]
unifrac_C_ordered <- unifrac_C[match(rownames(meta_C), rownames(unifrac_C)), match(rownames(meta_C), colnames(unifrac_C))]
adonis(dist(bray_C_ordered) ~ meta_C$cycle_phase, permutations=10000, method="bray")$aov.tab
```

```r
## Permutation: free
## Number of permutations: 10000
## Terms added sequentially (first to last)
##
## Df SumsOfSqs MeanSqs F.Model      R2    Pr(>F)
## meta_C$cycle_phase  3 12.489  4.1629  5.0873 0.38872 9.999e-05 ***
## Residuals          24 19.639  0.8183         0.61128
## Total              27 32.127                  1.00000
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

adonis(unifrac_C_ordered ~ meta_C$cycle_phase, permutations=10000)$aov.tab
```

```r
## Permutation: free
## Number of permutations: 10000
## Terms added sequentially (first to last)
##
## Df SumsOfSqs  MeanSqs F.Model     R2 Pr(>F)
## meta_C$cycle_phase  3   0.65761 0.219204  2.3053 0.2237 0.0033 **
## Residuals          24   2.28208 0.095087         0.7763
## Total              27   2.93969                  1.00000
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

FIGURE 4A
\[
\text{meta3$rep_state} \leftarrow \text{factor(meta3$rep_state, levels = c("C", "P", "PPA", "MC"))}
\]
\[
\text{par(fig=c(0,0.8,0,0.8), new=TRUE, xpd=TRUE, mar=c(10,4,1,4))}
\]
\[
\text{plot(meta3$bray.pco1, meta3$bray.pco2, xlab=paste("PCO 1 (",\text{signif(bray.var_pco1,2)}, ")",sep=""), ylab=paste("PCO 2 (",\text{signif(bray.var_pco2,2)}, ")",sep=""), pch=19, col=c("darkturquoise", "darkorange", "purple", "navy")[as.numeric(meta3$rep_state)], xlim=c(-0.6,0.6), ylim=c(-0.5,0.5), cex.lab=1.25, cex.axis=1.25)}
\]
\[
\text{legend('bottom', inset=c(1,-0.55), c("Ovarian Cycling","Pregnant","Postpartum Amenorrhea","Miscarrying"), col=c("darkturquoise","darkorange","purple","navy"), pch=19, cex=1, xpd=TRUE)}
\]
\[
\text{mtext("A", side=3, at=c(-0.85), line=4, cex=2, font=2)}
\]
\[
\text{meta4_noMC <- droplevels(subset(meta3, meta3$rep_state != "MC")}
\]
\[
\text{par(fig=c(0,0.8,0.49,0.95), new=TRUE, xpd=TRUE)}
\]
\[
\text{boxplot(meta4_noMC$bray.pco1 ~ meta4_noMC$rep_state, horizontal=TRUE, ylab='NA', axes=FALSE, col=c("darkturquoise", "darkorange", "purple"), pch=21, outbg=c("darkturquoise", "darkorange", "purple"))}
\]
\[
\text{par(fig=c(0.578,0.95,0.8),new=TRUE, xpd=TRUE)}
\]
\[
\text{boxplot(meta4_noMC$bray.pco2 ~ meta4_noMC$rep_state, ylim=c(-0.5,0.5), axes=FALSE, col=c("darkturquoise", "darkorange", "purple"), pch=21, outbg=c("darkturquoise", "darkorange", "purple"))}
\]
FIGURE 4B
bray_C.pcoa <- pco(as.matrix(bray_C), k=3)
bray_C.var_pco1 <- (bray_C.pcoa$eig[1]/sum(bray_C.pcoa$eig))*100
bray_C.var_pco2 <- (bray_C.pcoa$eig[2]/sum(bray_C.pcoa$eig))*100
bray_C.points <- data.frame(bray_C.pco1=bray_C.pcoa$points[,1], bray_C.pco2=bray_C.pcoa$points[,2])
meta_C1 <- merge(meta_C, bray_C.points, by="row.names")
rownames(meta_C1) <- meta_C1$Row.names
meta_C1$Row.names <- NULL
meta_C1$cycle_phase <- factor(meta_C1$cycle_phase, levels = c("A", "S", "O", "D ")).
par(fig=c(0,0.8,0.5,0.8), new=TRUE, xpd=TRUE, mar=c(10, 4, 1, 4))
plot(meta_C1$bray_C.pco1, meta_C1$bray_C.pco2, xlab=paste("PCO 1 (",signif(bray_C.var_pco1,2),"%), ylab=paste("PCO 2 (",signif(bray_C.var_pco2,2),"%) ",sep=""), pch=19, col= c("red", "gold3", ",3A02C", ",blue")[as.numeric(meta_C1 $cycle_phase)], xlim=c(-0.6,0.6), ylim=c(-0.5,0.5), cex.lab=1.25, cex.axis=1.25)
legend('bottom', inset=c(1,-0.55), c("Anestrus","Swelling","Peri-Ovulation","Decre turgescence"), col=c("red", "gold3", ",3A02C", ",blue"), pch=19, cex=1, xpd=TRUE)
mtext("B", side=3, at=c(-0.85), line=4, cex=2, font=2)
par(fig=c(0,0.8,0.49,0.95), new=TRUE, xpd=TRUE)
boxplot(meta_C1$bray_C.pco1 ~ meta_C1$cycle_phase, horizontal=TRUE, ylim=c(-0.6 ,0.6), axes=FALSE, col=c("red", "gold3", ",3A02C", ",blue"), pch=21, outbg=c("r ed", "gold3", ",3A02C", ",blue")
par(fig=c(0.578,0.95,0.0,0.8),new=TRUE, xpd=TRUE)
boxplot(meta_C1$bray_C.pco2 ~ meta_C1$cycle_phase, ylim=c(-0.5,0.5), axes=FALSE , col=c("red", "gold3", ",3A02C", ",blue"), pch=21, outbg=c("red", "gold3", ",3 A02C", ",blue")
FIGURE S6A
par(fig=c(0,0.8,0,0.8), new=TRUE, xpd=TRUE, mar=c(10,4,1,4))
plot(meta3$unifrac.pco1, meta3$unifrac.pco2, xlab=paste("PCO 1 (",signif(unifrac.var_pco1,2),"\%",sep=""), ylab=paste("PCO 2 (",signif(unifrac.var_pco2,2),"\%"",sep=""), pch=19, col=c("darkturquoise","darkorange","purple","navy")[as.numeric(meta3$rep_state)], xlim=c(-0.4,0.4), ylim=c(-0.4,0.4), cex.lab=1.25, cex.axis=1.25)
legend('bottom', inset=c(1,-0.55), c("Ovarian Cycling","Pregnant","Postpartum Amenorrhea","Miscarrying"), col=c("darkturquoise","darkorange","purple","navy"), pch=19, cex=1, xpd=TRUE)
mtext("A", side=3, at=c(-0.5), line=4, cex=2, font=2)
par(fig=c(0.0.8,0.49,0.95), new=TRUE, xpd=TRUE)
boxplot(meta4_noMC$unifrac.pco1 ~ meta4_noMC$rep_state, horizontal=TRUE, ylim=c(-0.4,0.4), axes=FALSE, col=c("darkturquoise","darkorange","purple"), pch=21, outbg=c("darkturquoise","darkorange","purple"))
par(fig=c(0.578,0.95,0,0.8),new=TRUE, xpd=TRUE)
boxplot(meta4_noMC$unifrac.pco2 ~ meta4_noMC$rep_state, ylim=c(-0.4,0.4), axes=FALSE, col=c("darkturquoise","darkorange","purple"), pch=21, outbg=c("darkturquoise","darkorange", "purple"))
FIGURE S6B
unifrac_C.pcoa <- pco(as.matrix(unifrac_C), k=3)
unifrac_C.var_pco1 <- (unifrac_C.pcoa$eig[1]/sum(unifrac_C.pcoa$eig))*100
unifrac_C.var_pco2 <- (unifrac_C.pcoa$eig[2]/sum(unifrac_C.pcoa$eig))*100
unifrac_C.points <- data.frame(unifrac_C.pco1=unifrac_C.pcoa$points[,1], unifrac_C.pco2=unifrac_C.pcoa$points[,2])
meta_C1 <- merge(meta_C, unifrac_C.points, by="row.names")
rownames(meta_C1) <- meta_C1$Row.names
meta_C1$Row.names <- NULL
meta_C1$cycle_phase <- factor(meta_C1$cycle_phase, levels = c("A", "S", "O", "D "))
par(fig=c(0,0.8,0.8), new=TRUE, xpd=TRUE, mar=c(10, 4, 1, 4))
plot(meta_C1$unifrac_C.pco1, meta_C1$unifrac_C.pco2, xlab=paste("PCO 1 (","signif(unifrac_C.var_pco1,2), ","", sep=""), ylab=paste("PCO 2 (","signif(unifrac_C.var_pco2,2), ","", sep=""), pch=19, col= c("red", "gold3", "#33A02C", "blue")[as.numeric(meta_C1$cycle_phase)], xlim=c(-0.4,0.4), ylim=c(-0.4,0.4), cex.lab=1.25, c ex.axis=1.25)
legend('bottom', inset=c(1,-0.55), c("Anestrus","Swelling","Peri-Ovulation","De turgescence"), col=c("red", "gold3", "#33A02C", "blue"), pch=19, cex=1, xpd=TRU E)

mtext("B", side=3, at=c(-0.5), line=4, cex=2, font=2)
par(fig=c(0,0.8,0.49,0.95), new=TRUE, xpd=TRUE)
boxplot(meta_C1$unifrac_C.pco1 ~ meta_C1$cycle_phase, horizontal=TRUE, ylim=c(-0.4,0.4), axes=FALSE, col=c("red", "gold3", "#33A02C", "blue"), pch=21, outbg=c ("red", "gold3", "#33A02C", "blue"))
par(fig=c(0.578,0.95,0.8), new=TRUE, xpd=TRUE)
boxplot(meta_C1$unifrac_C.pco2 ~ meta_C1$cycle_phase, ylim=c(-0.4,0.4), axes=FA LS, col=c("red", "gold3", "#33A02C", "blue"), pch=21, outbg=c("red", "gold3", "#33A02C", "blue"))
The relationships between taxonomic levels were added to the figure in Microsoft PowerPoint. The significant LEfSe comparisons between reproductive states were also added in Microsoft PowerPoint.
Combine all taxa relative abundance dataframes into a single dataframe
data <- rbind(phylum, class, order, family, genus, species)

Remove unknown taxa
unknown_taxa <- grep("uncultured|Ambiguous_tax|Unknown", rownames(data), value=TRUE)
data1 <- subset(data, !(rownames(data) %in% unknown_taxa))
other_taxa <- grep("\^\+(Other)\$", rownames(data1), value=TRUE)
data2 <- subset(data1, !(rownames(data1) %in% other_taxa))

Do some modification of taxa names
rownames(data2) <- gsub("k__p__c__o__f__g__s__", "", rownames(data2))
rownames(data2) <- gsub(";", ",", rownames(data2))
rownames(data2) <- gsub("\", ",", rownames(data2))
rownames(data2) <- gsub("","", rownames(data2), fixed=TRUE)
rownames(data2) <- gsub("-", ",", rownames(data2))

Pick out taxa based on lefse list
data_lefse_r <- data2[rownames(data2) %in% rownames(lefse_rep),]
data_lefse_c <- data2[rownames(data2) %in% rownames(lefse_cycle),]

Merge samples by rep. state
rep <- data.frame(rep=meta$rep_state, row.names=row.names(meta))
data_lefse_r1 <- t(data_lefse_r)
data_lefse_r2 <- merge(rep, data_lefse_r1, by="row.names")
rownames(data_lefse_r2) <- data_lefse_r2[,1]
data_lefse_r3 <- data_lefse_r2[,-1]
data_lefse_r3$rep <- as.factor(data_lefse_r3$rep)
data_lefse_r4 <- droplevels(subset(data_lefse_r3, rownames(data_lefse_r3) != "V32"))
data_lefse_r4_agg <- aggregate(data_lefse_r4[,3:ncol(data_lefse_r4)], by=list(data_lefse_r4$rep), FUN=mean, data=data_lefse_r4)
rownames(data_lefse_r4_agg)[1] <- "state"

Merge samples by cycle phase
cycle <- data.frame(cycle=meta$cycle_phase, row.names = row.names(meta))
cycle1 <- subset(cycle, cycle %in% c("A","S","O","D"))
data_lefse_c1 <- t(data_lefse_c)
data_lefse_c2 <- merge(cycle1, data_lefse_c1, by="row.names")
rownames(data_lefse_c2) <- data_lefse_c2[,1]
data_lefse_c3 <- data_lefse_c2[,-1]
data_lefse_c3$cycle <- as.factor(data_lefse_c3$cycle)
data_lefse_c3_agg <- aggregate(data_lefse_c3[,3:ncol(data_lefse_c3)], by=list(data_lefse_c3$cycle), FUN=mean, data=data_lefse_c3)
rownames(data_lefse_c3_agg)[1] <- "state"

Melt dataframes and sort
data_lefse_r_final <- melt(data_lefse_r4_agg)
rownames(data_lefse_r_final) <- c("state", "taxa", "average")
data_lefse_c_final <- melt(data_lefse_c3_agg)
rownames(data_lefse_c_final) <- c("state", "taxa", "average")
data_lefse_r_final <- data_lefse_r_final[order(as.character(data_lefse_r_final$rep), as.character(data_lefse_r_final$cycle)),]
Add column with significant comparisons

```r
library(ggplot)
data_lefse_r_final4 <- subset(data_lefse_r_final3, average > 0)
data_lefse_r_final4$state <- factor(data_lefse_r_final4$state, c("C", "P", "PPA"))
ggplot(data_lefse_r_final4, aes(state, taxa)) +
    geom_point(aes(fill=factor(phylum), size=average), shape=21) +
    theme_bw() + ylab("") + xlab("") + guides(fill = FALSE) +
```

Add column with phylum (for coloring circles later)

```r
library(splitstackshape)
data_lefse_r_final2 <- data.frame(cSplit(data_lefse_r_final1, "taxa", sep="|", drop=FALSE))
data_lefse_r_final3 <- subset(data_lefse_r_final2, select = -c(taxa_2,taxa_3, taxa_4,taxa_5))
names(data_lefse_r_final3)[4] <- "phylum"
data_lefse_r_final3$phylum <- with(data_lefse_r_final3, factor(phylum, levels = rev(levels(phylum))))
data_lefse_r_final3$taxa <- as.factor(data_lefse_r_final3$taxa)
data_lefse_r_final3$taxa <- with(data_lefse_r_final3, factor(taxa, levels = rev(levels(taxa))))
data_lefse_r_final3$average <- data_lefse_r_final3$average*100
```

Add column with significant comparisons

```r
library(ggplot)
data_lefse_r_final4 <- subset(data_lefse_r_final3, average > 0)
data_lefse_r_final4$state <- factor(data_lefse_r_final4$state, c("C", "P", "PPA"))
ggplot(data_lefse_r_final4, aes(state, taxa)) +
    geom_point(aes(fill=factor(phylum), size=average), shape=21) +
    theme_bw() + ylab("") + xlab("") + guides(fill = FALSE) +
```
The relationships between taxonomic levels were added to the figure in Microsoft PowerPoint. The significant LEfSe comparisons between ovarian cycle phases were also added in Microsoft PowerPoint.
data_lefse_c_final5 <- subset(data_lefse_c_final4, average > 0)
data_lefse_c_final5$state <- factor(data_lefse_c_final5$state, c("A", "S", "O", "D"))
ggplot(data_lefse_c_final5, aes(state, taxa)) +
 geom_point(aes(fill=factor(phylum), size=average), shape=21) +
 theme_bw() + ylab("") + xlab("") + guides(fill = FALSE) +
 scale_size_continuous(range = c(0.5,9), breaks = c(0.01,0.1,1,5,10,20,30,40,50),
 labels = c("\u2264 0.01%", "0.1%", "1%", "5%", "10%", "20%", "30%", "40%", \u2265 50%"),
 name="Average\nRelative\nAbundance") +
 theme(legend.position="right",
 legend.text.align=0, legend.title.align=0.5, legend.background = element_rect(fill="white", size=.5, linetype="solid", color="black"), axis.text.x=element_text(angle=45, size=12, vjust=1, hjust=1)) +
scale_fill_manual(values = c("#FFFF33","#FF7F00","#984EA3","#4DAF4A","#377EB8 ")) +
scale_x_discrete(labels=c("A" = "Anestrus", "S" = "Swelling", "O" = "Peri-Ovulation", "D"="Deturgescence"))

What is the mean relative abundance of the order Lactobacillales in peri-ovulatory females?

Mean

subset(data_lefse_c_final4, taxa="Firmicutes|Bacilli|Lactobacillales" & state="O")$average
Standard Deviation

sd(data_lefse_c3[c("V51","V39","V10","V50"),"Bacteria.Firmicutes.Bacilli.Lactobacillales"])*100
Remove non-normal cycle days (normal days: -22 through +12)
cycle_norm <- droplevels(subset(meta_C, cycle_day >= -22))
cycle_norm1 <- data.frame(cycle_day=cycle_norm$"cycle_day", sample_id = rownames(cycle_norm))
data1 <- t(phylum)
data2 <- as.data.frame(subset(data1, rownames(data1) %% cycle_norm1$sample_id))
data2[,"sample_id"] <- rownames(data2)
cycle_norm_taxa <- merge(cycle_norm1, data2, by="sample_id")
firm <- cycle_norm_taxa[,c(1,2,grep("Firmicutes",colnames(cycle_norm_taxa)))]
firm[,"phylum"] <- "Firmicutes"
colnames(firm) <- c("sample_id", "cycle_day_norm", "relative_abundance", "phylum")
fuso <- cycle_norm_taxa[,c(1,2,grep("Fusobacteria",colnames(cycle_norm_taxa)))]
fuso[,"phylum"] <- "Fusobacteria"
colnames(fuso) <- c("sample_id", "cycle_day_norm", "relative_abundance", "phylum")
firm_fuso <- rbind(firm, fuso)
firm_fuso$phylum <- as.factor(firm_fuso$phylum)
firm_fuso$relative_abundance <- firm_fuso$relative_abundance * 100

Plot
par(mar=c(5.1, 5.1, 4.1, 2.1), xpd=TRUE) #c(bottom, left, top, right)
plot(firm_fuso$cycle_day_norm, firm_fuso$relative_abundance,
xlim=c(-22, 12), ylim=c(-20,100), xlab="Day in ovarian cycle", ylab = "Relative phylum abundance (%)",
cex.axis=1.5, cex.lab = 1.5, type="n")
firmicutes <- subset(firm_fuso, phylum=="Firmicutes")
firmicutes <- firmicutes[order(firmicutes$cycle_day_norm),]
fusobacteria <- subset(firm_fuso, phylum=="Fusobacteria")
fusobacteria <- fusobacteria[order(fusobacteria$cycle_day_norm),]
xx <- seq(-21,11, length.out=1000)
a <- data.frame(cycle_day_norm = xx)
fuso_fit <- lm(relative_abundance ~ poly(cycle_day_norm,2,raw=FALSE), data=fusobacteria)
x <- predict(fuso_fit, newdata=a, interval="confidence", level = 0.95, type="response")
polygon(c(rev(xx), xx), c(rev(x[,3]), x[,2]),
col = adjustcolor('grey80',alpha.f=0.5), border = NA)
yy <- seq(-21,11, length.out=500)
b <- data.frame(cycle_day_norm = yy)
firm_fit <- lm(relative_abundance ~ poly(cycle_day_norm,2,raw=FALSE), data=firmicutes)
y <- predict(firm_fit, newdata=b, interval="confidence", level = 0.95, type="response")
polygon(c(rev(yy), yy), c(rev(y[,3]), y[,2]),
col = adjustcolor('grey80',alpha.f=0.5), border = NA)
lines(xx, x[, "fit"], col='#FF7F00', lwd=1.5)
lines(yy, y[, "fit"], col='#984EA3', lwd=1.5)
points(firm_fuso$cycle_day_norm, firm_fuso$relative_abundance,
 col= c("#984EA3", "#FF7F00")[as.numeric(firm_fuso$phylum)],
 pch=c(19,17)[as.numeric(firm_fuso$phylum)])
legend("topright", inset=c(0.015,0.015), legend=c("Firmicutes","Fusobacteria"),
 pch=c(19,17), col=c("#984EA3", "#FF7F00"), cex=1.25)

Vaginal pH
Is there a significant difference in vaginal pH between reproductive states and ovarian cycle phases?

```r
kruskal.test(ph$ph ~ ph$rep_cycle)
```

```
## Kruskal-Wallis rank sum test
## data:  ph$ph by ph$rep_cycle
## Kruskal-Wallis chi-squared = 11.782, df = 4, p-value = 0.01905
```

Yes.

FIGURE S8

```r
mean_ph <- aggregate(ph$ph, list(ph$rep_cycle), mean)
colnames(mean_ph) <- c("rep_cycle","mean")
sd_ph <- aggregate(ph$ph, list(ph$rep_cycle), sd)
colnames(sd_ph) <- c("rep_cycle","sd")
ph1 <- merge(mean_ph, sd_ph, by="rep_cycle")
ph1$rep_cycle <- factor(ph1$rep_cycle, levels = c("A", "S", "D", "P", "PPA"))
ph1 <- ph1[order(ph1$rep_cycle),]
plot(as.numeric(ph1$rep_cycle), ph1$mean, ylim=c(4,10), xlim=c(0.5,5.5), ylab="Vaginal pH", xlab=NA, cex.axis=1.25, cex.lab=1.25, xaxt="n", type="n")
axis(1, at=c(1,2,3,4,5), labels=c("A","S","D","P","PPA"), cex.axis=1.25, cex.lab=1.25)
arrows(as.numeric(ph1[1,1]), ph1[1,2]-ph1[1,3], as.numeric(ph1[1,1]), ph1[1,2]+ph1[1,3], length=0.05, angle=90, code=3)
arrows(as.numeric(ph1[2,1]), ph1[2,2]-ph1[2,3], as.numeric(ph1[2,1]), ph1[2,2]+ph1[2,3], length=0.05, angle=90, code=3)
arrows(as.numeric(ph1[3,1]), ph1[3,2]-ph1[3,3], as.numeric(ph1[3,1]), ph1[3,2]+ph1[3,3], length=0.05, angle=90, code=3)
arrows(as.numeric(ph1[4,1]), ph1[4,2]-ph1[4,3], as.numeric(ph1[4,1]), ph1[4,2]+ph1[4,3], length=0.05, angle=90, code=3)
arrows(as.numeric(ph1[5,1]), ph1[5,2]-ph1[5,3], as.numeric(ph1[5,1]), ph1[5,2]+ph1[5,3], length=0.05, angle=90, code=3)
points(as.numeric(ph1$rep_cycle), ph1$mean, type = "p", bg=c("red","gold3","blue","#FFA500","#800080"), pch=21,cex=1.5)
```
Vertical and horizontal transmission
How many unique maternal sibling pairs?

```
relatel <- relate
relatel[upper.tri(relatel, diag = TRUE)] <- NA
r_melt <- melt(relatel)
colnames(r_melt) <- c("sname1","sname2","r")
r_melt <- subset(r_melt, !is.na(r))
key <- data.frame(baboon_id=meta$baboon_id, sample_id=rownames(meta))
merge1 <- merge(key, r_melt, by.x="baboon_id", by.y="sname1", all.x=TRUE)
colnames(merge1[1:2]) <- c("baboon_id1", "sample_id1")
merge2 <- merge(key, merge1, by.x="baboon_id", by.y="sname2", all.x=TRUE)
colnames(merge2[1:2]) <- c("baboon_id2", "sample_id2")
parents <- data.frame(sample_id=rownames(meta), mother=meta$mother, father=meta$father)
merge3 <- merge(parents, merge2, by.x="sample_id", by.y="sample_id1")
colnames(merge3[1:3]) <- c("sample_id1", "mom1", "dad1")
merge4 <- merge(parents, merge3, by.x="sample_id", by.y="sample_id2")
colnames(merge4[1:3]) <- c("sample_id2", "mom2", "dad2")
merge4$sibtype <- ifelse((merge4$som1 == merge4$som2) & (merge4$sdad1 == merge4$sdad2), "full",
                          ifelse(merge4$som1 == merge4$som2, "mat",
                                  ifelse(merge4$sdad1 == merge4$sdad2, "pat","not")))
merge4[is.na(merge4$sibtype),]$sibtype <- "not"
rep <- data.frame(rep=meta3$rep_cycle, row.names=rownames(meta))
data1 <- merge(rep, merge4, by.x="row.names", by.y="sample_id1")
colnames(data1[1:2]) <- c("sample_id1", "rep1")
data2 <- merge(rep, data1, by.x="row.names", by.y="sample_id2")
colnames(data2[1:2]) <- c("sample_id2", "rep2")
data3 <- within(data2, {
    reptype <- ifelse(rep1 == rep2, "same","diff")
})
data4 <- merge(bray_melt, data3, by.x=c("sample_id1","sample_id2"), by.y=c("sample_id1","sample_id2"))
data5 <- merge(unifrac_melt, data4, by.x=c("sample_id1","sample_id2"), by.y=c("sample_id1","sample_id2"))
# Remove all pairs where the snames are equal (they will also be full sibs)
data6 <- subset(data5, baboon_id1 != baboon_id2)
# Remove all "not" sib pairs with r values >=0.125 (this means they are probably mother/daughter pairs)
data7 <- subset(data6, !{(sibtype == "not" & r >= 0.125))
# How many unique maternal sibling pairs?
nrow(unique(subset(data7, sibtype == "mat"),c("baboon_id1","baboon_id2"))))
```

```
## [1] 10
```
How many unique paternal sibling pairs?

```r
nrow(unique(subset(data7, sibtype == "pat"), c("baboon_id1", "baboon_id2")))
```

[1] 15

How many unique unrelated pairs?

```r
nrow(unique(subset(data7, sibtype == "not"), c("baboon_id1", "baboon_id2")))
```

[1] 1049

What is the average relatedness (r) of unrelated pairs?

Mean

```r
mean(unique(subset(data7, sibtype == "not"), c("baboon_id1", "baboon_id2", "r")))$r
```

[1] 0.004524398

SD

```r
sd(unique(subset(data7, sibtype == "not"), c("baboon_id1", "baboon_id2", "r")))$r
```

[1] 0.01477449

Do maternal siblings have more similar microbiomes than paternal siblings or non-related pairs?

Remove the effect of rep. state

```r
data7$reptype <- as.factor(data7$reptype)
lm_bray <- lm(data7$bray ~ data7$reptype)
resid_bray <- lm_bray$residuals
data8 <- data.frame(data7, resid_bray)
# Unifrac Weighted
lm_unifrac <- lm(data8$unifrac ~ data8$reptype)
resid_unifrac <- lm_unifrac$residuals
data9 <- data.frame(data8, resid_unifrac)
data9$sibtype <- as.factor(data9$sibtype)
data9$sibtype <- factor(data9$sibtype, levels = c("mat", "pat", "not"))
# Bray-Curtis
kruskal.test(data9$resid_bray ~ data9$sibtype)
```
Kruskal-Wallis rank sum test
data: data9$resid_bray by data9$sibtype
Kruskal-Wallis chi-squared = 0.24966, df = 2, p-value = 0.8826

#Weighted Unifrac
kruskal.test(data9$resid_unifrac ~ data9$sibtype)

Kruskal-Wallis rank sum test
data: data9$resid_unifrac by data9$sibtype
Kruskal-Wallis chi-squared = 0.77353, df = 2, p-value = 0.6793

No.

Does overall pairwise genetic relatedness between baboons explain similarity in vaginal microbial communities?

```r
library(reshape2)
r_melt <- melt(relate)
colnames(r_melt) <- c("sname1", "sname2", "r")
key <- data.frame(baboon_id=meta$baboon_id, sample_id=rownames(meta))
merge1 <- merge(key, r_melt, by.x="baboon_id", by.y="sname1", all.x=TRUE)
colnames(merge1)[1:2] <- c("baboon_id1", "sample_id1")
merge2 <- merge(key, merge1, by.x="baboon_id", by.y="sname2", all.x=TRUE)
colnames(merge2)[1:2] <- c("baboon_id2", "sample_id2")
relate_m <- acast(merge2, sample_id1~sample_id2, value.var="r")
rep_m <- as.matrix(daisy(data.frame(rep=meta$rep_cycle, row.names=rownames(meta)), metric="gower"))
bray1 <- bray(match(rownames(relate_m), rownames(bray)),match(rownames(relate_m), colnames(bray)))
unifrac1 <- unifrac(match(rownames(relate_m), rownames(unifrac)),match(rownames(relate_m), colnames(unifrac)))
rep_m <- rep_m[match(rownames(relate_m), rownames(rep_m)),match(rownames(relate_m), colnames(rep_m))]
# Mantel tests
library(vegan)
mantel.partial(bray1, relate_m, rep_m, method="pearson", permutations=10000)
```
Partial Mantel statistic based on Pearson's product-moment correlation

Call:
mantel.partial(xdis = bray1, ydis = relate_m, zdis = rep_m, method = "pearson", permutations = 10000)

Mantel statistic r: 0.01533
Significance: 0.30457

Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.0350 0.0436 0.0509 0.0597
Permutation: free
Number of permutations: 10000

mantel.partial(unifrac1, relate_m, rep_m, method="pearson", permutations=10000)

Partial Mantel statistic based on Pearson's product-moment correlation

Call:
mantel.partial(xdis = unifrac1, ydis = relate_m, zdis = rep_m, method = "pearson", permutations = 10000)

Mantel statistic r: 0.01844
Significance: 0.26807

Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.0361 0.0458 0.0537 0.0626
Permutation: free
Number of permutations: 10000

No.

Does sharing sexual partners predict vaginal microbial similarity?
B5 (sample V5) and B30 (sample V17) are not included because they don't have any consorts (too young)

```r
consort_bray <- as.matrix(vegdist(history, method="bray", binary=FALSE, diag=TRUE, upper=TRUE))
rep_m1 <- rep_m[rownames(rep_m) %in% rownames(consort_bray), colnames(rep_m) %in% rownames(consort_bray)]
rep_m1 <- rep_m1[match(rownames(consort_bray), rownames(rep_m1)), match(rownames(consort_bray), colnames(rep_m1))]
bray_ss <- bray[rownames(bray) %in% rownames(consort_bray), colnames(bray) %in% rownames(consort_bray)]
bray_ss <- bray1[match(rownames(consort_bray), rownames(bray1)), match(rownames(consort_bray), colnames(bray1))]
unifrac_ss <- unifrac[rownames(unifrac) %in% rownames(consort_bray), colnames(unifrac) %in% rownames(consort_bray)]
unifrac_ss <- unifrac1[match(rownames(consort_bray), rownames(unifrac1)), match(rownames(consort_bray), colnames(unifrac1))]
mantel.partial(bray_ss, consort_bray, rep_m1, method="pearson", permutations=10000)
```

```
## Partial Mantel statistic based on Pearson's product-moment correlation
##
## Call:
## mantel.partial(xdis = bray_ss, ydis = consort_bray, zdis = rep_m1, method = "pearson", permutations = 10000)
##
## Mantel statistic r: 0.0515
##       Significance: 0.044696
##
## Upper quantiles of permutations (null model):
## 90%  95%  97.5%   99%  
## 0.0377 0.0496 0.0599 0.0731
## Permutation: free
## Number of permutations: 10000

mantel.partial(unifrac_ss, consort_bray, rep_m1, method="pearson", permutations =10000)
```
Yes!

Does individual identity predict vaginal microbial similarity?

```r
bid <- data.frame(baboon_id=meta[,"baboon_id"], row.names=row.names(meta))
bid_m <- as.matrix(daisy(bid, metric="gower"))
bray1 <- bray[match(rownames(bid_m), rownames(bray)),match(rownames(bid_m), colnames(bray))]  
unifrac1 <- unifrac[match(rownames(bid_m), rownames(unifrac)),match(rownames(bid_m), colnames(unifrac))]  
rep_m <- rep_m[match(rownames(bid_m), rownames(rep_m)),match(rownames(bid_m), colnames(rep_m))]  
mantel.partial(bray1, bid_m, rep_m, method="pearson", permutations=10000)
```

```r
## Partial Mantel statistic based on Pearson's product-moment correlation
##
## Call:
## mantel.partial(xdis = bray1, ydis = bid_m, zdis = rep_m, method = "pearson", permutations = 10000)
##
## Mantel statistic r: 0.03127
##       Significance: 0.13289
##
## Upper quantiles of permutations (null model):
## 90%   95%   97.5%  99%
## 0.0364 0.0477 0.0594 0.0732
## Permutation: free
## Number of permutations: 10000
```
mantel.partial(unifrac1, bid_m, rep_m, method="pearson", permutations=10000)

```r
##
## Partial Mantel statistic based on Pearson's product-moment correlation
##
## Call:
## mantel.partial(xdis = unifrac1, ydis = bid_m, zdis = rep_m, method = "pearson",
##     permutations = 10000)
##
## Mantel statistic r: 0.0235
## Significance: 0.19098
##
## Upper quantiles of permutations (null model):
##  90%  95% 97.5% 99%
##  0.0343 0.0439 0.0526 0.0626
## Permutation: free
## Number of permutations: 10000
```

No.

Does similarity in age predict vaginal microbial similarity?

```r
age <- data.frame(age=meta[,"age"], row.names=row.names(meta))
age.dist <- as.matrix(dist(age, method = "manhattan", upper=TRUE, diag=TRUE))
bray1 <- bray[match(rownames(age.dist), rownames(bray)),match(rownames(age.dist), colnames(bray))]
unifrac1 <- unifrac[match(rownames(age.dist), rownames(unifrac)),match(rownames(age.dist), colnames(unifrac))]
rep_m <- rep_m[match(rownames(age.dist), rownames(rep_m)),match(rownames(age.dist), colnames(rep_m))]
mantel.partial(bray1, age.dist, rep_m, method="pearson", permutations=10000)
```
No.

Does social group co-residency predict vaginal microbial similarity?
grp <- data.frame(grp=meta[,"social_grp"], row.names=row.names(meta))
grp.dist <- as.matrix(daisy(grp, metric="gower"))

bray1 <- bray[match(rownames(grp.dist), rownames(bray)),match(rownames(grp.dist), colnames(bray))]
unifrac1 <- unifrac[match(rownames(grp.dist), rownames(unifrac)),match(rownames(grp.dist), colnames(unifrac))]
rep_m <- rep_m[match(rownames(grp.dist), rownames(rep_m)),match(rownames(grp.dist), colnames(rep_m))]
mantel.partial(bray1, grp.dist, rep_m, method="pearson", permutations=10000)

Partial Mantel statistic based on Pearson's product-moment correlation
Call:
mantel.partial(xdis = bray1, ydis = grp.dist, zdis = rep_m, method = "pearson", permutations = 10000)
Mantel statistic r: 0.01359
Significance: 0.26707
##
Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.0327 0.0438 0.0540 0.0654
Permutation: free
Number of permutations: 10000

mantel.partial(unifrac1, grp.dist, rep_m, method="pearson", permutations=10000)

Partial Mantel statistic based on Pearson's product-moment correlation
Call:
mantel.partial(xdis = unifrac1, ydis = grp.dist, zdis = rep_m, method = "pearson", permutations = 10000)
Mantel statistic r: 0.008199
Significance: 0.34287
##
Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.0330 0.0444 0.0561 0.0707
Permutation: free
Number of permutations: 10000