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Supplementary Methods 
 

1.1. Genotype calling from RRBS data  

We used BisSNP to call genotypes from the RRBS data using default parameters (Liu et 

al. 2012). To minimize genotyping error, we retained only biallelic variable sites identified in an 

independently collected whole genome resequencing data set (the Baboon Genome Consortium’s 

Diversity Panel: Rogers et al. in press). We also filtered for variants with a Phred-scaled variant 

quality score ≥ 30 and a minor allele frequency > 5% within baboons. Among these variants, we 

further filtered for genotype calls with minimum read coverage > 4 and removed variants where 

genotype calls were retained for fewer than 66% of baboon individuals. This procedure resulted 

in a genotype call set for 49,607 biallelic sites, which together recapitulate the known baboon 

phylogeny (Fig. S8).  

 

1.2. DNA methylation, regions of alternate phylogeny, and nucleotide diversity 

Because incomplete lineage sorting and admixture have shaped sequence diversity in 

baboons (Tung and Barreiro 2017, Rogers et al. in press), we tested whether they also influence 

the relationship between genetic structure and DNA methylation levels. Using the 15 individuals 

sampled in the baboon diversity panel generated by the Baboon Genome Sequencing Consortium 

(Rogers et al. in press), we tested sliding 2 Mb windows (with a step size of 50 Kb) for their fit 

to the global consensus phylogeny shown in Fig. 1A. “Local” phylogenetic trees were generated 

in R using the packages SNPrelate (Zheng 2012) and ape (Paradis et al. 2004) to import 

genotype calls, convert genotype calls into a distance matrix, and infer a neighbor-joining tree 

from each window. The topology of the global phylogenetic tree was compared to the local 

phylogenetic tree using the all.equal function in ape with use.edge.lengths set to false.  

On average, each window included 30,184 variable sites (note that a set of 4,000 variable 

sites chosen at random from the Baboon Genome Diversity Panel genotype calls perfectly 

recapitulated the global phylogeny in 96% of cases). Across the genome, 39% of windows 

perfectly matched the global consensus phylogeny (for another 33% of windows, only 1-2 

individuals were misplaced relative to the consensus phylogeny). We then subset CpG sites into 

those that occurred in regions that perfectly matched the global phylogeny (n=542,509 CpG 

sites) and those that did not (n=211,852 CpG sites) and compared the covariance matrix for each 

set of methylation profiles to the overall genetic covariance matrix (derived from the RRBS 

data). 

We also used the baboon diversity panel to estimate nucleotide diversity (π: Nei and Li 

1979) for each baboon species. For each CpG site we profiled and each species, we calculated π 

per nucleotide for the 1 kb region centered on the site. We then calculated the average value of π 

across species for each CpG site, and then compared CpG sites with evidence of positive 

selection to those with taxonomic structure, but no evidence of positive selection. For sites with 

evidence for positive selection (on any lineage), we also compared mean π between species 

putatively affected by the shift in selective optimum to the mean for the species that were not 

affected by the shift.  

Finally, we used the Baboon Genome Diversity Panel to estimate how often CpG motifs 

near each focal CpG site (within a 1 kb window centered on the site) were disrupted among 

baboons. Here, we counted the number of variable sites in which one version of the site carried 



an intact CpG site but the alternative version led to loss of the CpG site in at least one sequenced 

individual. We then used logistic regression to ask whether sites that exhibited taxonomic 

structure (n=20,360) were associated with higher numbers of nearby disrupted sites than sites 

that exhibited no taxonomic structure (n=736,002). We also asked whether sites with evidence 

for positive selection (on an individual baboon species using the heuristic method or on a baboon 

clade using both the heuristic method or OU approach; n = 2,980) were associated with higher 

numbers of nearby disrupted sites than sites with no such evidence (n = 17,380), in this case 

considering only the set of taxonomically structured sites (n=20,360).  

 

1.3. Identification of differentially methylated regions   

To calibrate the false discovery rate for sites with significant taxonomic structure 

(identified using ANOVA), we used the q-value approach of Storey and Tibshirani (2003) 

relative to an empirically determined, permutation-based null. To generate the null distributions 

for this analysis, we held the number of individuals sampled per species constant and conducted 

a series of ten permutations (at each level) where (i) individuals were randomly assigned to 

genus, (ii) individuals were randomly assigned to baboon clades (northern or southern) within 

genus, and (iii) individuals were randomly a species identity within clades. We then applied an 

ANOVA to generate the null distributions for differences in DNA methylation for genus-, clade-, 

and species-level taxonomic structure, respectively. We also used the permutation results to 

calculate q-values for the results of the binomial mixed effect models used test for species-

specific methylation (see main text).  

Following previous studies (e.g., Lister et al. 2009, Hansen et al. 2012, Lea et al. 2016), 

we defined differentially methylated regions (DMRs) by grouping together nearby CpG sites 

with similar interspecific differences in DNA methylation. To develop a null expectation, we 

permuted the species assignment for each sample while maintaining the structure of other 

covariates (e.g., bisulfite conversion rate). Across ten independent permutations, we observed a 

mean of 197 ± 194 s.d. CpG sites that exhibited significant clade or species-specific methylation 

(compared to 13,098 in the observed data). We never observed stretches of 2 kb contiguous 

sequence that contained 3 or more differentially methylated sites (and observed no more than 12 

such stretches that contained 2 differentially methylated sites). We therefore conservatively 

defined DMRs as 2 kb contiguous regions that contained 3 or more differentially methylated 

sites.  

We also checked whether these DMRs were more common than expected by chance, 

given the number of sites we detected that were taxonomically structured (n=20,360). Among the 

sites that exhibited significant taxonomic structure, we randomly assigned a label of species- or 

clade-specific methylation to the same number of sites detected in the real data (repeating this 

approach 100 times). We observed substantially more DMRs in the empirical data than expected 

based on our random assignment procedure (724 relative to 430.9 ± 21.4 s.d. in the label-

permuted data; z-score = 13.70, p < 10-6). Similarly, we also detected many more DMRs 

associated with a signature of positive selection at the species or clade levels than expected by 

chance (species: 5.39 ± 0.59 s.d. compared to 70 observed in the real data, z = 109.51, p < 10-6; 

clade: 0.75 ± 2.09 s.d. compared to 25 observed in the real data, z = 11.60, p < 10-6).  

 

1.4. Ornstein-Uhlenbeck model simulations and power to identify selected sites 



To estimate our power to identify cases of positive selection using the OU model 

approach, we simulated data consistent with genetic drift, stabilizing selection, and positive 

selection on either each individual baboon species or a multi-species lineage. For each site, we 

first simulated the mean methylation level for each species by drawing from a multivariate 

normal distribution (Equation 4 in the main text). We then simulated the methylation level for 

each individual based on the species’ mean methylation levels; methylation for each individual 

was drawn from a normal distribution where the expectation is the mean methylation of the 

species to which the individual belonged and variance is 𝜏2, the intraspecific variance. Simulated 

parameter values for 𝜎2 and 𝜏2 came from a grid of 5 values each that spanned the range of 

observed values (𝜎2 = 0-10; 𝜏2 = 0-20). 𝛼 was set to 0 to simulate genetic drift and randomly 

drawn from a uniform distribution between 5 and 10 for sites simulated under stabilizing or 

positive selection. These values for 𝛼 correspond to strong selection, and are near the upper end 
of the observed parameter estimates; they thus almost completely remove phylogenetic structure 

from the covariance matrix. For positive selection, we simulated a 50% difference in DNA 

methylation level between the ancestral optimum level (1) and the new optimum level for the 

lineage on which a shift occurred (2). Following the approach we used for the observed data, we 
then filtered the complete set of simulated sites for those that exhibited interspecific differences 

in DNA methylation (ANOVA, FDR < 0.10). For the filtered set, we identified the best fitting 

Ornstein-Uhlenbeck model for each site using AIC.  

Initially, we fit eight models that included positive selection on some part of the baboon 

tree: one each for positive selection on the five individual baboon species, one for the anubis-

Guinea lineage, and one for each clade (northern and southern). Across 10,000 simulations, we 

calculated the proportion of cases in which sites were assigned to each model, for sites that were 

simulated under drift, stabilizing selection, or positive selection. For sites in which multiple best 

models included positive selection somewhere on the tree, we were unable to localize positive 

selection to a specific branch. We therefore grouped all such sites into a single, inferred “positive 

selection” category. Using all eight models that included positive selection (plus models for drift 

across the tree and stabilizing selection across the tree), we identified 63-78% of true simulated 

cases of positive selection. However, we also assigned 44% and 49% of sites simulated under 

genetic drift and stabilizing selection to positive selection, respectively.  

Because of these high false positive rates, we chose to only test for positive selection on 

multi-species lineages (retaining three models that included positive selection: one for each clade 

and one for selection on the anubis-Guinea lineage). Doing so substantially reduced the false 

positive rate (19% for genetic drift; 17% for stabilizing selection), but still allowed us to detect 

55-61% of true cases of positive selection (Table S5). As cautioned in the main text, because this 

approach does not achieve perfect specificity and sensitivity, the sets of sites identified in the 

observed data should be treated as enriched for cases of positive selection as opposed to as a 

definitive set. We focused our analyses on sites inferred to evolve under positive selection 

because stabilizing selection was rarely chosen as the best fitting model, and most true simulated 

cases of stabilizing selection were misassigned to genetic drift. Further, strong stabilizing 

selection generates little detectable taxonomic structure in the DNA methylation data (sites with 

no evident taxonomic structure were not considered in our tests for selection). 

We also examined whether sample size and/or independent evolutionary history 

contribute to our power to detect lineage-specific shifts. Neither sample size nor independent 

evolutionary history has a large effect on the false positive rate. However, more independent 

evolution appears to confer increased power to detect true positive cases of positive selection. 



For example, hamadryas baboons have the longest independent evolutionary history and we were 

better powered to detect positive selection on the hamadryas lineage than on any other individual 

baboon species.  

 

1.5. Correcting for heterospecific mapping biases 

Reads from all the species in our sample were mapped to the anubis baboon reference 

genome (Panu2.0), which could introduce biases due to heterospecific mapping. To assess the 

impact of heterospecific mapping, we generated haploid genomes and simulated RRBS reads for 

individuals of each baboon species. The haploid genomes were generated from the baboon 

genome diversity panel genotype calls based on one randomly selected individual per species. If 

the individual was heterozygous at a SNP, the non-reference allele was chosen to maximize the 

possibility of potential biases. Haploid genomes underwent in silico Msp1 digestion using the 

SimRAD package in R (Lepais & Weir 2016) and fragments between 150 and 450 bp were 

retained, as in our actual RRBS protocol. We simulated 100 bp reads from the start and end of 

each fragment, with a bisulfite conversion rate of 100% assuming no non-CpG methylation (i.e., 

all non-CpG cytosines were in silico converted to uracil/thymine).  

Each set of reads was duplicated to produce one data set that simulated post-bisulfite 

conversion reads carrying only methylated CpG sites (no change to the original sequence at CpG 

sites, but all other C’s converted to T’s), and a second data set that simulated post-bisulfite 

conversion reads carrying only unmethylated CpGs (all C’s in the read converted to T’s), but that 

was otherwise identical to the first. When combined, the two data sets simulate a true CpG 

methylation level of 0.5 at all sites. We then mapped the combined data set to Panu2.0 and 

estimated CpG methylation levels after mapping, following the same procedure used for our real 

data. 

We identified two cases in which mapping to Panu2.0 leads to systematic inaccurate 

methylation level estimates (i.e., estimates not equal to 0.5) (Figure S5). The first case is when a 

CpG site is eliminated, relative to the reference genome, by a transition from cytosine to thymine 

(i.e., the site is CG in the reference genome, but TG in the sample). In this case, reads from TG 

individuals are treated as if they were converted to thymine and are counted as unmethylated, 

when in fact DNA methylation is no longer possible at those sites. This error could create a bias 

towards more (apparent) completely unmethylated sites with increasing genetic distance from the 

reference genome. 

The second case is when a new CpG site is introduced in the sample genome relative to 

the reference genome, where the reference sequence is TG. The methylation level at the new site 

influences the read’s mapping efficiency because unmethylated CpGs are converted to TG and 

match the reference sequence better than methylated CpG sites, which are retained as CG. 

Because CpG site methylation is only called at CpG sites that occur in the reference genome, this 

difference in mapping efficiency will only affect CpG methylation estimates at CpG sites that are 

physically close to the location of the new, non-reference site. This case can lead to incorrect 

DNA methylation estimates at the CpG site in the reference genome, with error rates potentially 

increasing with increasing genetic distance from the reference genome (the more distant the 

sample, the more likely 1 more mismatch will cause the read to fail to map entirely).  

These problems can be resolved by (i) excluding methylation level estimates for samples 

in which a CpG site is disrupted by a C  T transition; and (ii) using three-nucleotide mapping, 

which allows Cs and Ts to map interchangeably (i.e., a cytosine base in a read can map to a 

thymine reference without being considered a mismatch, and vice-versa). To remove C  T 



transitions, we used information from the mapped reads. For any CpG site, bisulfite sequencing 

reads can map representing the Watson strand (CG for methylated sites, TG for unmethylated 

sites), the Crick strand (GC for methylated sites, GT for unmethylated sites), the reverse Watson 

strand (as a result of PCR after bisulfite conversion: GC for methylated sites, AC for 

unmethylated sites), and the reverse Crick strand (also the result of PCR: CG for methylated 

sites, CA for unmethylated sites). To identify C  T transitions in the original sample, we use 

information from reads mapped to the Watson and Crick strands only, ignoring those mapped to 

the reverse Watson and reverse Crick strands. Unlike true CpG sites, where no adenines are ever 

detected, CpG sites that have undergone a C  T transition always map to the Watson strand as 

TG and to the Crick strand as AT after bisulfite conversion (if the transition is G  A at the 

second base, which disrupts the Crick strand CpG motif, we would observe TA reads mapping to 

the Watson strand and GT reads mapping to the Crick strand). Thus, observing any adenine base 

mapping to the reference genome CpG motif indicates disruption to the original CpG site. We 

therefore removed all sample-site combinations from the data set when this condition was 

observed.  

After making these corrections, we observe no systematic errors in methylation level 

estimation that can be explained by genetic distance from the reference genome (Figure S7). 

 

1.6. Assessment of the effects of cell type heterogeneity and source population 

Estimates of DNA methylation levels in heterogeneous tissues like whole blood can be 

affected by variation in cell type composition across samples (Houseman et al. 2012, Reinius et 

al. 2012). To investigate its potential effects in our study, we tested whether CpG sites where a 

large proportion of the variance in DNA methylation levels was explained by species identity 

tended to be sites with methylation levels that strongly differ across blood cell types.  

Because no analyses of cell type-specific DNA methylation have been conducted in 

baboons, we drew on publicly available DNA methylation data generated from pure populations 

of CD4+ (helper) T cells, CD8+ (cytotoxic) T cells, natural killer cells, B cells, monocytes, and 

granulocytes from human whole blood (Jaffe and Irizarry 2014). Because these data were 

generated on Illumina 450K Infinium arrays, relatively few CpG sites overlapped with our data 

set. However, for the 9,627 CpG sites that were profiled in both the Jaffe data set and in our 

samples, we considered a CpG site to be differentially methylated by cell type if (i) a significant 

(10% FDR) difference among cell types was reported by Jaffe & Irizzary (using an ANOVA), 

and (ii) average DNA methylation levels differed by at least 10% between the two most 

prevalent white blood cell types (granulocytes and CD4+ T cells, which together account for 

more than two-thirds of nucleated human blood cells on average and are similarly common in 

baboons).  

Out of the 9,627 sites in our data set that are also on the 450K array, 1,701 met these 

criteria. We compared the distribution of ANOVA test statistics between sites with and without 

cell type-specific effects using a Kolmogorov-Smirnov test, and found that sites with cell type-

specific effects were not enriched for taxon-specific differences (identified using an ANOVA; 

two-sided K-S test, D=0.02, p = 0.373). This analysis suggests that our results are not primarily 

driven by the effects of cell type heterogeneity. Furthermore, sites with cell type-specific 

methylation were not enriched for signatures of directional selection using Ornstein-Uhlenbeck 

models (log2(OR) = 0.023, p = 0.657) or the heuristic approach (log2(OR) = -0.031, p = 0.713).  

Populations within a species may also differ in DNA methylation level (Fraser et al. 

2012, Heyn et al. 2013, Dubin et al. 2015). In this study, we included samples from two 



populations of anubis baboon (n = 2 and 7) and three populations of hamadryas baboon (n = 5, 7, 

and 2). In a PCA of anubis baboons, individuals from the same population did not cluster 

together. Similarly, hamadryas baboons did not cluster by source population (ANOVA on PCs 1-

4: p > 0.10). We also used ANOVA to test for the PVE explained by population, within species. 

Population assignment did not explain greater variance in our data set than expected by chance 

(based on permutation of population assignment within species). Thus, differences between 

populations do not significantly contribute to variation within this dataset.  
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Table S2: Enrichment by genomic context for CpG sites with taxonomically structured DNA 

methylation and positive selection.  

 Gene 

Introns 

Gene  

Exons 
Promoters Enhancers 

CpG 

Islands 
CpG Shores 

Unannotated 

Region 

Interspecific 

differences1 

0.265 

(2.83x10-34) 

-0.569 

(4.00x10-52) 

-0.183 

(3.30x10-5) 

-0.513 

(4.24x10-35) 

-0.422 

(3.08x10-38) 

-0.255 

(2.92x10-20) 

0.097  

(1.24x10-6) 

Positive 

Selection2 

-0.185 

(1.31x10-3) 

0.564 

(2.16x10-8) 

0.506 

(1.35x10-5) 

0.317 

(3.28x10-3) 

0.704 

(3.46x10-16) 

0.491  

(6.92x10-11) 

-0.325  

(1.18x10-8) 
1 Enrichment for CpG sites with clade or species level differences in DNA methylation (taxonomically 
structured sites; n=20,360) relative to the background set of CpG sites that were not constitutively 
hyper- or hypo-methylated (n = 756,262). Values in each cell give the log2odds ratio (top) and p-value 
(bottom) from a Fisher’s Exact Test. 
2 Enrichment for CpG sites where variation in DNA methylation is best explained by positive selection 
(on an individual baboon species using the heuristic method or on a baboon clade using either the 
heuristic method or OU approach; n = 4,901), relative to the background set of CpG sites with clade or 
species level differences in DNA methylation. Values in each cell give the log2odds ratio (top) and p-value 
(bottom) from a Fisher’s Exact Test. 

 

Table S3: Enrichment by genomic context for CpG sites with taxonomically structured DNA 

methylation, stratified by level of taxonomic structure.  
 Gene 

Introns  

Gene  

Exons 
Promoters Enhancers 

CpG 

Islands 
CpG Shores 

Unannotated 

Regions 

Genus1 0.154 

(6.53x10-59) 

-0.311 

(1.08 x10-93) 

-0.133 

(2.97x10-12) 

-0.119 

(3.01x10-13) 

-0.125 

(2.74 x10-21) 

-0.144 

(3.20x10-35) 

0.026  

(1.99x10-3) 

Clade 0.229 

(3.89x10-17) 

-0.365 

(5.46x10-16) 

-0.013 

(0.417) 

-0.463 

(2.63x10-19) 

-0.215 

(3.62x10-8) 

-0.107  

(8.92x10-4) 

0.003 

(0.451) 

Species 0.344 

(2.17x10-29) 

-0.909 

(8.67x10-58) 

-0.449 

(3.28x10-11) 

-0.680 

(5.56x10-29) 

-0.803 

(8.17x10-59) 

-0.506 

(3.96x10-35) 

0.344  

(2.17x10-29) 
1 Enrichment for CpG sites with differences in DNA methylation between macaques and baboons (row 
1), northern and southern clade baboons (row 2), and baboon species within a clade (row 3) (ANOVA 
10% FDR). Values in each cell give the log2odds ratio (top) and p-value (bottom) from a Fisher’s Exact 
Test. 

 

Table S4: Enrichment by genomic context for CpG sites with evidence for positive selection, 

stratified by modeling approach and level of taxonomic structure.  
 Gene 

Introns  

Gene  

Exons 
Promoters Enhancers CpG Islands CpG Shores 

Unannotated 

Regions 

Species: 

Heuristic 

-0.166 

(5.20x10-3) 

0.355 

(1.34x10-3) 

0.460 

(2.97 x10-4) 

0.242 

(4.88x10-2) 

0.616 

(2.78x10-11) 

0.435 

(4.90x10-8) 

-0.280 

(5.34 x10-6) 

Clade: 

Heuristic 

-0.277 

(1.08x10-2) 

0.938 

(1.25x10-8) 

0.710 

(3.75x10-4) 

0.328 

(0.103) 

1.106 

(2.27x10-15) 

0.619 

(9.71x10-7) 

-0.525  

(3.55x10-7) 

Clade:  

OU models 

-0.061 

(0.170) 

0.245 

(3.19x10-3) 

0.022 

(0.843) 

0.244 

(7.69x10-3) 

0.180 

(1.08x10-2) 

0.203 

(5.24x10-4) 

-0.064  

(0.130) 
1 Enrichment for CpG sites with evidence for positive selection, stratified by method and taxonomic 
level, relative to the set of sites with taxonomic structure in DNA methylation (n = 20,360). Values in 
each cell give the log2odds ratio (top) and p-value (bottom) from a Fisher’s Exact Test. 

  



Table S5: Proportion of simulated sites assigned to alternative OU models when positive 

selection affects multi-species lineages.  

 Assigned to 

Genetic Drift Stabilizing Selection Directional Selection 

Si
m

u
la

te
d

 

u
n

d
e

r 

Brownian Motion 79.16% 1.65% 19.19% 

Stabilizing Selection  78.49% 4.82% 16.69% 

Shift: Northern Clade 36.36% 2.62% 61.02% 

Shift: Southern Clade 41.47% 2.55% 55.98% 

Shift: Anubis-Guinea 38.88% 2.81% 58.31% 

  



 
Figure S1: Properties of the RRBS data set. Dark blue bars show all sites with 5x coverage (n 

= 2.4 million sites); light blue bars show sites filtered for mean methylation between 10% and 

90% (n = 756k sites). (A) Proportion of annotated features in the baboon genome for which at 

least one CpG site was analyzed. Numbers above each bar represent the number of features 

tagged in our data set. (B) Proportion of total CpG sites analyzed that fell in each genomic 

region. Numbers above each bar represent the number of CpG sites included from each category. 

(C) Violin plots showing the distribution of mean DNA methylation levels for CpG sites located 

in each genomic context. White box plots show the interquartile range and median (black bar).  



 

 
Figure S2: Principal component analyses of DNA methylation levels, including macaques. 

PCA was performed on all measured CpG sites (n = 2.45 million sites; panel A) and for sites 

filtered for mean methylation between 10% and 90% (n = 756k sites; panel B). In both cases, 

macaques separate from all baboon samples along the first principal component of variation; 

subsequent PCs separate baboon species.  

  



 
Figure S3: Mean rate of change in DNA methylation levels, controlling for mean 

methylation. Estimated mean rate of change in DNA methylation levels per million years, 

stratified by genomic context. Data are split by mean methylation level (panels A-H).   



 

Figure S4: Enrichment by genomic context for sites with taxonomically structured DNA 

methylation levels. (A) Enrichment by genomic context for sites with taxonomically structured 

DNA methylation levels at the level of genus, baboon clade, and baboon species. (B) Enrichment 

by genomic context for candidate positively selected CpG sites relative to the set of 

taxonomically structured sites. The three values presented for clade-level selection refer to 

results from Ornstein-Uhlenbeck models, the heuristic approach, and the intersection of both 

approaches.  

 

  



 

Figure S5: CpG sites with taxonomically structured variation fall near a larger number of 

disrupted CpG sites. The number of nearby (within 1kb) CpG sites for which one version of the 

sites carries an intact CpG site, but the alternate version leads to a loss of the CpG site, for each 

CpG sites. CpG sites with taxonomic structure (blue) were nearby more disrupted CpG sites than 

CpG sites without taxonomic structure (pink) (logistic regression: β=0.0246, p=3.33x10-133). 

Within taxonomically structured sites, there was no difference based on evidence for positive 

selection (dark vs light blue) (β=1.93x10-3, p=0.471). The y-axis is truncated at 25, although each 

category includes a small number of sites with up to ~80 nearby disrupted CpG sites.  

 

  



 

Figure S6: Directionality of shifts in DNA methylation is accounted for by mean 

methylation level. (A) Difference in mean methylation level between species that experienced a 

shift in DNA methylation level and mean DNA methylation level across all baboons (y-axis), 

plotted against mean methylation across all baboons (x-axis). Only CpG sites associated with 

species-specific shifts are shown (no sites with mean methylation levels <10% or >90% were 

included in this analysis). Larger shifts tend to occur at sites with more extreme mean 

methylation levels. (B) Proportion of species-specific shifts in DNA methylation that involved 

hypermethylation on the shifted lineage, stratified by mean methylation level across all baboons. 

Sites that are hypomethylated exhibited increases in methylation on shifted lineages, whereas 

sites that are hypermethylated exhibited decreases in methylation on shifted lineages. 

  



 

Figure S7. Heterospecific mapping biases. (A) There are two cases in which mapping to a 

heterospecific individual produces biases in DNA methylation level estimates. In the first case, a 

C T transition at a CpG site results in the site being observed as hypomethylated even though 

no CpG site exists. In the second case, a T  C transition creates a novel CpG site. Because 

unmethylated cytosines are converted to match the reference (Sample 2), there is only a 

mismatch to the reference genome if the new CpG site is methylated. This results in a mapping 

bias towards reads where the new CpG site is unmethylated, which can affect estimates of DNA 

methylation at nearby (reference) CpG sites if methylation levels at the reference CpG sites and 

the new CpG site are correlated. (B) The proportion of CpG sites for which simulated DNA 

methylation levels were influenced by a mapping bias. 3 nucleotide mapping and removing C  

T transitions reduces the proportion of incorrect estimates, which tend to be higher for southern 

clade species than northern clade species (the reference genome was sequenced from a northern 

clade baboon). 

 



 

Figure S8. Structure of genotype data from RRBS. Unrooted neighbor joining tree performed 

on 49,607 baboon SNPs that were called from RRBS data. With the exception of a kinda and a 

yellow individual that were missing a large proportion of genotype calls (>55%), individuals of 

each species cluster together and the relationship between species recapitulates the known 

baboon phylogeny (Rogers et al. in press).  


