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Under a reasonable hypothesis about the distribution of trade shipments among 
a group of [( countries, or of non-self-directed acts among any group of K indi­
viduals, the likelihood of obtaining a given table of observed frequencies n;; is 

N! P1n1 • •. pKnK.Q,m' ... QK'"K 
L = --·~--------__c __ 

Iln;;! [l - P, ·Qi - · · · - Px ·QK]"' 

where n; =n;, + · · · +n;K and m; =nli+ · · · +nK; are the toto.l number of ship­
ments made and received, respectively, by country i, N is 1 he total number of 
shipments altogether, and I'; and Q; are the theoretical tendencies of co untry i to 
ship and to receive shipment respectively and satisfy "I:,?;= 'J:Q; = 1. In the attempt 
to test the correctness of the hypothesis, a critico.l problem is that of finding the 
maximum-likelihood estimates of the P's and Q's, that is, the values making L as 
large as possible. We give all solutions and show tho.t, for the usual table of obser­
vations, the solution is unique and amounts to finding the vo.lue of a for which 
K-2-R1 - • • • -RKisO-

where 
. /( m; + n;)2 4m;n; . 

R; = 'V l - ~- - ~-and settmp: 

P; = (1/2) ( 1 + n; ~ m; - R;) anJ Q, = (1/2) ( 1 + m; ~ n; - n,). 

1. INTRODUCTION AND SUMMARY 

In the analysis of social interactions, the problem arises [8] of maximizing 
the likelihood function 

111 "K "'1 mx 
Pi · · · Px ·Qi · · · QK 

L = C·--------------
[l - P1·Q1- · · · - Px·QK]N 

(1.1) 

over all non-negative P; and Q;, subject to the restraints 

Pi + · · · + PK = 1 and Q1 + · · · + QK = 1. (1.2) 

Here m1, • · · , mx, ni, · · · , nK (K?:. 2) are given non-negative integers 
satisfying ni+ · · · +nK=m1+ · · · +mK=N, and c is a positive number. It 
is further given that, for all i, n;+m;~N. 

Various (iterative) procedures for maximizing L have been suggested [l, 3, 
4, 8]; however, for none of them is it known whether the resulting sequences 
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converge.1 In the following we give a procedure for finding all solutions, and 
show that, in the "general case," the solution is unique. 

Briefly, the source of the problem is this. We suppose that there are K indi­
viduals directing acts of some kind toward one another and that, during some 
period of observation, they made a total of N such acts. The individuals may 
be countries, people, monkeys, or whatever, and the acts may be trade ship­
ments, threats, hits, or whatever; however, for the sake of concreteness, we 
shall discuss the problem in terms of countries and shipments. Letting ni and 
m; be the number of shipments made and received, respectively, by country i. 
and n;, the number sent by country i to country j, we have ni = n;1 + · · · +niK, 
m;=n1;+ · · · +nx;, and ni+ · · · +nK=m1+ · · · +mK= N. Such data 
are sometimes displayed in the form of a matrix (ni;), whence then/sand m/s 
may be called the row and column totals (or marginals) respectively. Since we 
are concerned only with exports and imports, the main diagonal will contain 
nothing but zeroes. 

If the shipments are made independently of one another, that is, if at each 
trial (occurrence of a single shipment) there is a constant probability p;; that 
it will be country i shipping to country j, and if the distribution of probabilities 
exhibits sender-receiver independence [8, p. 555; 5, p. 1093 ], that is, if the 
various ratios obtainable between the Pi/S of one row are the same as the cor­
responding ratios in any other row-except where a diagonal element is in­
volved-then there are two sets, Pi, · · · , Px and Q1, · · · , Qx, of non­
negative "parameters" satisfying (1.2) and such that 

where 

P;·Q; . . 
p;; = -- for i ~ J, 

t 
p;; = 0 for i = j 

t = L:,Pi·Q; = 1 - P1Q1 - ... - PKQK, 
i-rj 

(1.3) 

and the likelihood L of obtaining in N trials exactly the distribution observed is 
given by (1.1), where 

N! 
c = ~~~~~~~-

nu !n12 ! · · · nKK ! 

The parameters Pi and Q; may be called the "theoretical tendencies" of coun­
try i to ship and receive shipment respectively; they are, in general, only ap­
proximately equal to the true tendencies (probabilities) p; and qi, since 

Pi(l - Q;) 
p; = Pii + · · · + p;K = and 

qi = Pli + ... + PKi = (1 - Pi)Qi 

(1.4) 

The conjunction of the two assumptions about independence, upon which the 

1 A referee has pointed out that in Section 4 of [5] a procedure is given which is convergent under the conditions 
•pecified there. 
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validity of (1.1) must depend, is called our "null-hypothesis" or "model." (For 
further details see [ 8].) 

Typically, the P's and Q's are not known, but are rather to be estimated 
from the observed n;'s and m/s. Then, after making such an estimation, one 
usually compares the predicted or expected values E;i = P•i · N with the ob­
served entries n;i to see whether the overall disagreement is great enough to 
discredit the null-hypothesis-for in most applications it is in no way given 
that the model is correct. 

Of the several kinds of estimation possible, we are concerned only with the 
maximum-likelihood estimate, which consists of finding those P's and Q's 
making L a maximum. In the following we show how to find every such set of 
P's and Q's, when they exist, and explain the conditions under which they will 
fail to exist. 

The reader interested in the practical results can refer to the flow chart 
(Figure 1) or to the following summary. (In both, multiple solutions have been 
eliminated, where they exist, either by demanding symmetry between the P 
and Q values or by setting equal to zero any parameter not required to be 
positive.) In addition, an illustrative example will be found at the end of the 
article (p. 1379). 

Summary. The function L can be maximized according to the following 
schedule. For (1), (2) and (3), other solutions exist which are described in the 
text. 

1. If all the n;i are zero except nhk, set Ph= Qk = 1, all others 0. 
2. If all row-totals are zero except n,. but two or more column totals are non­

zero, set P,.= 1, Qh=O, and, for i-:Ph, P;=O and Q;=m;/ N. If all column­
totals are zero except mk but two or more row totals are non-zero, set 
Pk=O, Qk= 1, and, for £-:Pk, P;=n;/ N and Q;=O. 

3. If all the n;i are zero except nhk and nk,., set 

n - ;----
Ph = Qk = h - v nhmh 

' n,. - mh 
pk = Q,. = mh - -vn;:m;, 

m,. - nh 

any others zero. (In case nh-mh=O, set Ph=Pk= Q,.= Qk = 1/ 2.) 
4. If no n; or mi or n,.k+nkh equals N, but all n;i are zero except those 

in some one row and the corresponding column, there is no solution. 
(Gather more data.) 

5. If no one row plus corresponding column contains all the non-zero n;h 

choose Jo so that µio will be ~µ;=m;+n;+2vmm; for all i, define U(a) 
=K-2-Ri - · · · -RK and V(a) =K-2+Ri0 -2:;,.,i0R; where 

I( m; + n;)2 4m;n; 
R; = 1- - --

a a 2 

and a is the unique solution to U (a)= 0 or V (a)= 0, and set 

( 
n· -m · ) 

P; = (1/2) 1 + ' a ' - R, , 

Tables with Zero Diagonal 

Q; = (1/2) ( 1 + m; : n; - R,) 
for i -:P Jo, and 

P, = (1/2) (1 + n, ~ m; - CR.), 

Q; = (1/2) (1 + m;: n; - CR;) 
fori=}o-where C = 1 if U(a) =0 and C= -1 if V(a) =0. 
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The remainder of the article is devoted to proving the foregoing results and 
justifying the procedures given in the flow chart. 

2. PRELIMINARY REMARKS 

To place the problem in an analytic setting let S denote the subset of E 2K 

(Euclidean 2K-space) which contains the point x =(Pi, · · · , PK, Qi, · · · , 
QK) only if 2:P,Q,<1=2:P;=2:Q; with each P, and Q;~O, and let R denote 
the set of all numbers; then L is a continuous function from S to R which is 
bounded from above by 1. 

We notice immediately that S is not compact (since it fails to contain, for 
example, the point with Pi= Qi= 1, others 0), so it is not certain that L will in 
fact have a maximum. Of course it will have a least upper bound, say b, but 
there may be no point where L takes on the value b. That will depend on con­
ditions which we shall presently describe. 

3. SPECIAL CASES: MULTIPLE SOLUTIONS 

In case N = 0, L will equal 1 whatever the values of the P's and Q's. (In no 
trials one is certain to get no results.) In what follows we shall assume that 
N;eO. 

Theorem 1. If all the n;i are zero except n,.k, then the maximum of L (namely 
L=l) can be obtained either by setting P,.=1, Qh=l-q and Qk=q (all 
others zero) for any positive number q:s; 1, or by setting Ph=p, Pk= 1-p and 
Qk = 1 (all others zero) for any positive number p:::; 1, and in no other way. 

Proof. Suppose the hypothesis. Then L = (PhQk/ 2:,,.,iP,Qi)nhk which is 1 
under either of the conditions indicated in the theorem. Conversely, if L = 1, 
then P,. and Qk>O, but PkQh=O and P;=Q;=O for i;eh, k-whence one of P,. 
and Qk must equal 1. 

Note: In the next two theorems, and in the "factoring of L," we make use 
of the fact that a product like pin1 • • • PKnK with p;~O and 2:p;= 1, can be 
maximized only by p; = n;/ N for all i. 

Theorem 2. If all row totals are zero except, say, ni, but two or more 
column totals are non-zero, then the maximum of L (namely L = (N !/m2 ! 
· · · mK !) ·m2m 2 • • • mK mK/ NN) can be obtained by setting P1=1, Qi= 1-q 

and Q;=q·m;/N (i=2, · · ·, K) for any positive number q:s;l, and in no 
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TYPE AND 
DIMENSION 
OF ARRAYS 

Figure 1. FLOW CHART FOR 

Ph= 1 Qhz 0 

(Pk" 0 Qk= 1 

m1 
Q,=N 

n1 ) P =­; N 

Ph s Qk 
n h- .Jnhiiih 

nh-mh 
= 1-Ph 

other way. (And analogously for any other row total n; or any column total 
mi. ) 

Proof. Suppose the hypothesis. Then m1=0 and, for any set of Q's, 

£ = C · Q 2m2 . . . Q KmK 

(
1 - P1 1 - P2 1 - PK )N 
--Q1+--Q2 + .. '+ - - - QK 

P1 P1 ~ 

is maximal only for P 1=1, others 0. But then, writing q = 1-Qi and Q, = Q;/ q 
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MAXIMIZING L 

CHOOSE j
0 

SO THAT µ.jo 
WILL BE ;>: /.L; FOR ALL i 

SMALL a = MAX l N, µ.jd 

N' c = -1 BIGa = 2Nj
0 

C=l BIGa =2N 

SMALL a + BIG a 
2 

Yes 
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DEFINITIONS 

µ1 =mi+n i+2~ 

R;=~l(1- m;;"·)2- 4:~n; I 
U(a) =K-2-LR; 

F(a) =C·U(a)+C·R. -R· 
Jo Jo 

(This makes F equal U if C 

is 1, -V if C is -1, and 

quasi-decreasing in either 
case.) 

N;=N-m; -n; 

R- = C·R· 
Jo• Jo 

P-=t(1+n;-m; -R.\ Q.=J..(1+m;-n;_R\ 
1 a i/ 1 2 a ~ 

P = P;·O; 
ij l-~Q1- ... -fl<OK E~ = P;j'N 

PRINT P;, O;, etc. 

for i=2, · · ·, K, we have L=c.Qt1 • • • QK mIC which we know is maximal 
only if Q; = m;/ N for all i. 

Theorems 1 and 2 cover all the possibilities where some marginal equals N. 
We can perhaps make plausible the non-uniqueness of the solutions by observ­
ing that, if country 1 does all the shipping, there is no test of its theoretical 
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receptivity, Qi, and we can make it whatever we like. If we agree to set any 
such parameter equal to zero, uniqueness will be restored (cf. (1) and (2) of 
the summary). 

We shall henceforth assume that no marginal equals N, which is equivalent 
to saying that at least two n; and at least two m; are greater than zero. 

Theorem 3. If all the n;i are zero except nhk and nkh, then the maximum of 
L (namely L=(N!/nh!nk!)nhn1vr1,knk/NN) can be obtained by setting Ph equal 
to any number between 0 and 1, Pk= l-Ph, Qh=nkPh/D, Qk =nhPk/D where 
D=nkPh+nhPk, P;=Q;=O for any i~h or k, and in no other way. 

Proof. Suppose the hypothesis. 
First we shall show that Ph+ Pk must equal 1 for a maximum. If K = 2 

there is nothing to show. If KC.3 we use conditional maximization: For any 
set of Q's with Qh and Qk>O and any given Pi, · · · , Pk (P,"C_O) with Ph and 
Pk>O, ~P,= 1 (i~h, k) and P1,+Pk= 1, we can consider L to be a function of a 
single variable, p =Ph+ Pk, apportioning p and its complement l -p among the 
P/s according to the formulas 

P; = pP; for i = h or k, 
(C) 

P, = (1 - p)P; for i ~ h or k. 

We can then maximize L conclitionally, that is, subject to the condition (C) on 
Pi, · · · , PK. But clearly 

Ph nhpk nkQh mhQk"'k 
L = --------------------------

[ 
1 - p 1 - p JN 

PhQk + 1\Qh + -- (Qh + Qk) + L Qi+ -- L (1 - Pi)Qj 
p i"'h.k p j,.,h,k 

can be maximized only by p = 1, and, since that is true whatever the P's, L 
can be maximized only by Ph+ Pk = 1. 

Similarly Qh+Qk=l. Then L=c·phn•pknk where ph=PhQdt and pk=PkQh/t 
[cf. (1.4) above]. Under the conditions indicated in the theorem, Ph= nh/Nh and 
pk=nk/N, which maximizes c·ph""Pk"k. Conversely, if ph=nh/N and pk=nk/N, 
then p11 is between 0 and 1, Qh=nkph/ D and Qk=n,.PdD. 

Nate: The apparent lack of P-Q symmetry in the statement of the theorem 
is indeed only apparent, for, under the conditions indicated, Qk is between 0 
and 1, Q,.=l-Qk, 

nhQk . nkQh 
Pk = and Ph = -----

nhQk + nkQh n,.Qk + nkQh 

Theorems 1 and 3 cover all the possibilities where the observed trade involves 
only two countries, h and k. The non-uniqueness of the solutions can perhaps 
be understood by observing that, since country h can ship only to country k, 
a decrease in P1, can be compensated for by an increase in Qk. If, on the other 
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hand, we require that Ph equal Qk, uniqueness will be restored (cf. (1) and (3) 
of the summary). 

This completes the discussion of all special cases which lead to multiple 
solutions. Henceforth we shall assume that the observed trade is not confined 
to two countries, which is the same as saying that n,i+ni; <N for all i and j, 
and continue to assume that no marginal equals N. 

4. FACTORING OF L 

Let us now consider an alternate expression for L. If each Q; < 1, we may 
write L=c·f·G, where 

j = Pini ' ' 'PKnK (4.1) 

[cf. (1.4) earlier] and 

Qt! ... QKmK 

(1 - Qi)"1 ' . "(1 - QK)"K 
G= (4.2) 

Now v,,-e know that the maximum off occurs when, and only when, p; = n;/ N 
for all i. Hence, if we find some set of Q's maximizing G, and if, for that set, we 
can find a set of P's satisfying 

P;(l - Q;) n; 
for i = 1, · · · , K (4.3) 

N 

the resulting P's and Q's will maximize L. 2 

2 We note that L can also be written 

L=c·F·g· 
with 

P1n1 Px 11
K 

F = and g =qlmi · · · q mK, 
(1 - P1)m1 (1 - PK)mK K 

and mention that Savage, Deutsch, Alker and Goodman have considered the possibility of maximizing f and g 
simultaneously-that is, the possibility of solving simultaneously the 2K equations in 2K unknowns 

P;(l - Q;) n; (1 -P;)Q; m; 

N N 
i = 1, · · ·, K. 

They have proposed the following iterative procedure: set 

n; 
pi(1) =Pi = N I 

Pi 

P;(n+l) = I - - Q;<"J 

~--P_i_ 
1 1 - Q/"' 

1ni 

Q•''' =q• =N and 

and 

q; 

Q/n+1) = I - P ,{n) 

~--q_;_ 
i 1 -P/"l 

for each positive integer n, and set P;, =limn-oo Pi(n), Qi =limn-QO Q/n) if those Jimits exist. 

(4.3') 

On the assumption that the procedure is convergent (and the implicit assumption that each limit is < 1), Good­
man [3] has shown that it will yield a solution to (4.3 1

), and hence maximizes f and o. That it will also maximize F 
and G-and hence L- is, however, not immediately clear. 
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Theorem 4. For every set of Q's making G>O, there exists a unique set of 
P's satisfying (4.3); it is the solution to the system of simultaneous equations 

(1-Q1+ ~ Q1)P1 + 
n1 
N Q2P 2 + ... + n1 n1QKPK -

N N 

n2 n2QKPK -
N N 

n2 
N Q1P1 +(1-Q2+ ~ Q2)P2+ · · · + 

(4.4) 

nK 
N Q1Pi ( 

nK ) nK + ... + 1-QK+ N QK PK= N + 
nK 
N Q2P2 

and it will have the properties that Pi+ · · · +PK= 1 and Pi;:::o for all i. 

Proof. Suppose that Qi, · · · , QK make G>O. Since no Q; = 1, the matrix 
of the system (4.4) has a strictly dominant main diagonal [9, p. 13]; whence 
(4.4) has a unique solution P1, · · · , PK. Adding the equations of (4.4), we 
have Pi+··· +PK=l. Now t>O [since some P;>O and (1-Q;)P;=(n;/N) 
(1-PiQi- · · · -PKQK)=(ni/N)t], whence Pi, ···,PK satisfy (4.3) and 
each P, is ;:::o. 

Since a system like (4.4) may readily be solved by any one of several standard 
methods, we may confine our attention to the maximizing of G. As a matter of 
fact, however, in both of the remaining cases we shall find ways of calculating 
the P's without having to deal with (4.4). 

The domain of G is not compact; hence G may fail to have a maximum. On 
the other hand, from Theorem 4 we see that, if L has a maximum, so does G­
namely max L / (c·n1n1 • • • nKnx/NN), and that, if some set of P's and Q's 
maximizes L, the Q's will maximize G. The precise conditions under which G 
and L will have or fail to have a maximum are given in Theorems 5 and 7-
for the sake of which we introduce the abbreviation Mi=m(+n;. 

5. "CLEARING-HOUSE" CASE; NO SOLUTION 

Theorem 5. If N equals, say, Mi, then L has no maximum. Ho\vever, the 
least upper bound of L, namely 

n2"2 ... nK"K ·m2 m2 ••• mK mK 
b = C·-------------~ 

NN 

can be approximated as closely as one likes by approaching the "singular 
point," Pi= 1, Qi= 1, sufficiently closely and in the right way-that is, by 
taking a sufficiently small q>O, setting Qi=l-q, Q;=q(m;/ni) for i=2, 
· · ·, K, and determining the corresponding P's through (4.4). (And 

analogously for any other M;=N.) 

Proof. Suppose that Mi= N. For any given Q2, · · · , QK with sum 1 making 
D = Q2m2 • • • QK m K positive, we can attempt to maximize G conditionally over 
all Qi<l , with Q2, · · ·, QK defined by Q;=q·Q;. 
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But 

Qi"'t·qN-m1.Q/'2 ... QKmK 
G= --------------(1 - Qi)ni. (1 - Q2)n2 (1 - QK)nx 

(5.1) 
Qi"t Qi"K 

(1 - qQK)nK ·D (1 - qQ2)n2 

can always be increased by increasing Qi; and, since that is true whatever the 
Q;, G can have no maximum. However, since Q;=m;/n1 maximizes D, the 
l.u.b. of G is 

m2m2 ... mKmK 

ni"' 

and the rest of the theorem follows. 

In "determining the corresponding P's through (4.4)" we observe that 
Pi-71 as Q1-71. Since, moreover, the condition N =Mi is symmetric in mi and 
ni, we might wonder if we can approximate b by choosing a sufficiently small 
q>O, setting Pi= Qi= 1-q, P;=q(n;/ mi) and Q;= q(m;/ni) for i=2, · · ·, K­
and thereby dispense with the routine but tedious solution of (4.4). We would 
then have 

lim L = c·n2n2 ••• nKnKm2mz ... mKmx;2Nnin1m1m1. 
Q1->0 

But, unfortunately, that is less than b if ni,emi (proof omitted). Thus, unless 
n1 =mi, it is fruitless to approach the singular point along the line Pi= Q1. The 
correct strategem is given in Theorem 6. 

Theorem 6. If N = M1 then b can be approximated as closely as desired by 
choosing a sufficiently small positive number e and setting P 1=1-em1, 
Q1=1-en1, and P;=en;, Q;=em; for i,el. (And analogously for any other 
M,=N.) 
(Proof omitted.) 

Notice that, since N1 = N -Mi is the sum of all the entries n;; not in the 
first row or the first column, Theorems 5 and 6 cover the case where every such 
entry is zero, that is, where country 1 acts as a sort of clearinghouse for the 
others: nobody else can ship except to it nor receive shipment except from it. 
Of course, if we believed that that relation held for the parent population of 
shipments and not just for this sample, we would use a different model: p;1 = p; 
and p1;= q;for i,el, Pu =0 and p;;=O for i,j,el, where p;=n;/N and q;=m;/N, 
and hence P2+ · · · +PK+q2+ · · · +qK = 1. (These p;/s are the limiting 
values of the probabilities obtained in accordance with (1.3) as we approach the 
singular point in accordance wlth Theorem 5 or Theorem 6.) And analogously 
for any other N;=O. 
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6. THE "GENERAL" CASE: THERE IS A SOLUTION 

If, on the other hand, Ni>O, we see from (5.1) that limQ, ... oG=O, and 
analogously for any other Ni>O. Hence, if no Ni=O, there is a continuous 
extension of G to the (compact) closure of its present domain, the extension 
having the value zero at all the new points. Since the extension has a maximum, 
and since no such maximum occurs at any of the new points, we see that G 
itself must have a maximum. Thus we have 

Theorem 7. If no Ni=O, Lhasa maximum. 

Henceforth we shall assume that no Ni=O, or, what is the same thing, that 
Mi< N for all i. That is what some people might call "the general case,'' since 
the other cases are rarely encountered. 

While Theorem 7 is no doubt of some theoretical interest, it is scientifically 
useless. What is needed instead, and what in fact we develop in the remainder 
of the article, is a practical method for generating a maximum. In the process 
we shall establish the other important theoretical result, that the maximum of 
Lis unique. The results are summarized in Theorems 11 and 12. 

7. NECESSARY CONDITIONS; ELIMINATING EXTRANEOUS SOLUTIONS 

Let us now find some necessary conditions for maximizing G. In the following, 
a "point" will always be a point (Qi, · · · , QK) of EK. From (5.1) we see that 
maximizing G requires Qi= 0 if mi= 0 and Qi> 0 if mi ;;eo. In the latter case, the 
derivative 

dG mi Ni n2Q2 
-=-G--G----G-
dQi Qi q 1 - qQ2 

nKQK G 

1 - qQK 

G [ ( nz nK )] =-·mi-Qi·--+ .. ·+---
qQi 1 - Q2 1 - QK 

must be zero. In fact, the quantity inside the brackets must be zero in either 
case. Thus, among the points satisfying the equations 

( 
n2 na 

mi-Qi·--+--+ 
1 - Q2 1 - Qa 

m2 - Q2 · --- + --- + ( 
n1 n a 

1 - Qi 1 - Qa 

·+ =0 nK ) 
1 - QK 

nK ) ·+ --- =0 
1 - QK 

mK-QK· - - + ---+ "·+ =0 ( 
ni n2 nK- i ) 

1 - Qi 1 - Q2 1 - QK- i 

will be found every point which maximizes G. 

(7.1) 

There may also be "extraneous solutions," (i.e., with some Qi negative or 
with Qi+··· +QK;;el): in the example 
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- --1---·---

0 l 2 3 

1 0 2 3 

1 1 0 2 
___ , ___ , ___ , __ _ 

2 2 4 8 

the equations are satisfied both by (1 / 4, 1/ 4, 1/ 2) and by (-2, -2, 2). We 
shall shortly give a si!llple condition-(A) of Theorem 8-to ensure that every 
Qi is non-negative, and we remark now that any point satisfying (7.1) with 

ni nK 
a=---+ .. ·+---

1 - Qi 1 - QK 

different from zero will also satisfy l;Qi = 1. (Proof omitted.) 
[Parenthetical remark. There is not much hope of solving (7.1) by algebraic 

manipulations alone. In case K = 3, the problem can be reduced, after much 
calculation, to that of solving the quartic equations 

a;Q/ + b;Q/ + c;Q/ + d;Qi + e; = 0 (i = 1, 2, 3) 

(where 

ai = (n2na - m2ma) (min2na + m2nina + manin2 - 2nin2na - mim2ma) 

bi = ni(n2N2 + naNa)(3n2na - m2ma - m2na - man2) 

- 2mi(n2N2 + naNa)(n2na - m2ma) - ni2Ni(m2 - n2)(ma - na) 

Ci = - ni
2
NiN2(m2 - n2) - ni2NiNa(ma - na) + niN2Na(m2na + man2) 

+(mi - ni)(n22N22 + n22N22 + 4n2naN2Na) - 2mim2maN2Na 

di = N2Na(ni - 2mi)(n2N2 + naNa) - ni2NiN2Na 

ei = miN/Na· 

and a2, · · · , e2, aa, · · · , ea may be found by analogy). For K>3, the calcula­
tions become prohibitively lengthy, and we must look for another approach.] 

If we introduce the abbreviation 

ni nK 
a= --- + .. ·+---

then (7.1) becomes 
1 - Qi 1 - QK 

niQi 
m; + -- - Q;a = 0 

1 - Q; 

or, after multiplication by 1-Qi, 

(i = 1, · · ·, K) 

aQi2 - (a + m; - ni)Qi +mi = 0 (i = 1, · · ·, K) 

(7.2) 

(7.3) 

(7.4) 
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among whose solutions must, as before, be found every point which maximizes 
a.a 

The next theorem gives a condition to be added to (7.1) or (7.4) to eliminate 
extraneous solutions (points not in the domain of G). 

Theorem 8. In order for a solution of (7.1)-or (7.4)-to have every 
Q;~O it is necessary and sufficient that 

ni nK --+ .. ·+ >N· 
1 - Qi 1 - QK -

(A) 

Proof. Necessity of (A) is obvious, and sufficiency follows from (7.4) : 

b, ± v'bi2 - 4mia 
Q;=-----

where b,=a+m,-n, is positive if a>n,. 

And, as already remarked, a ~O is sufficient to ensure ~Qi= 1. Thus, among 
the one or more points satisfying the conjunction (7.lA) of (7.1) and (A) must 
be found every point which maximizes G. And equally for the conjunction 
(7.4A) of (7.4) and (A). 

8. THE NECESSARY CONDITIONS IN TERMS OF THE PARAMETER a 

In (7.2) we have a expressed in terms of the Q's. It is more fruitful to think 
of a as the "independent variable" and use (7.4) to express the Q's in terms of a: 

b· + r· 
Qt=~ 

2a 

where bi=a+m,-n, and 

(i = 1, · · ·, K) 

ri = v'bi2 - 4mia = v'(a - M;) 2- 4min;. 

(8.1) 

Then we can say that the problem of solving (7.lA) is equivalent to the prob­
lem of finding every usable value of a-i.e., ~µ;= Mi+2v'n;mi for all i (so 
that r; = v' a - µi v' a-M ,+ 2y'n;m; will be real) and ~ N-for which the Q's­
as given by (8.1)-will satisfy (7.2). As a matter of fact, it suffices to find every 
value of a for which the corresponding Q's have sum 1: 

Theorem 9. If, for some usable a, the Q's-as defined by (8.1)-satisfy 
Q1+ · · · +QK= 1, then 

ni nK --+···+ =a. 
1 - Qi 1 - QK 

(Proof omitted.) 

In Theorem 9 we begin to see the rudiments of a procedure for maximizing G. 

1 The referee has kindly pointed out that Equation (7.4) was presented earlier by Blumen, Kogen, and Mc­
Carthy in (2) and by Goodman in (6), and that, in addition, methods for solving Equation 7.4 were discussed in 
Goodman's 1961 article [6), and the relationship between Equation 4.3' (Footnote 2) and Equation 7.4 was discussed 
in Goodman's 1963 article [3, Section 4). 
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9. CORRECT SIGN FOR Q;; THE FUNCTIONS U AND V 

Now consider the choice of "sign" in the expressions (8.1) for Qi, · · ·, QK. 
Since there are 2K ways to distribute + and - among them, one might antici­
pate 2K quests for an a to make Qi+ · · · + QK = 1. How practical that would 
be can perhaps be seen from the following consideration: supposing that each 
quest takes ten seconds, we calculate that, if K = 20, the whole process will take 
more than one year, while if K = 40, the process will take more than a million 
years. We therefore have to reduce the number of distributions that need to be 
considered. 

Since ~Q;= (1/ 2)(K ±Ri± · · · ±RK)-where R,=r,/ a-we shall need to 
use enough minus signs to make ±Ri± · · · ±RK= -(K-2). In fact, we 
cannot use more than one plus sign: 

Lemma 1. For any usable a, 

Ri + R2 - Ra - · · · - RK > - (K - 2) 

(and equally for Ri, Ra or any other choice of "plus terms"). 

Proof. For any usable a, R; -5, 1-M ;/ a, and hence - Ra - · · · - RK > 
-(K-2). 

We can reduce the possibilities still further: 

Lemma 2. If µ1'5,µ2 (where µi=mi+n;+2v'm.n;), then 

Ri - R2 - ... - RK > - (K - 2), 

(and equally for µ15,any other µi)· And analogously for any µi-5,µi. 

Proof. Suppose that µi-5,µ2. Since Ri-R2- · · · -RK~Z(a)-(K-2), 
where Z(a)=R1-R2+(Ni+N2)/a, it suffices to show that Z(a)>O. If 
a= µ2 then R2 = 0 and there is nothing left to prove; so suppose that a> µ2. 
Then it suffices to show that z(a) = a(ri +r2) · Z (a) is > 0. 

Case 1. Suppose that M15,M2. Then 

z(a) = (M2 - M1)(2a - M2 - Mi) + 4m2n2 - 4m1ni + (Ni+ N2)(ri + r2) 

is positive at a= µ2 and increasing thereafter. 

Case 2. Suppose that M1>M2. For the sake of convenience, let 

m2n2 - m1ni Mi+ M2 Mi - M2 
f3=2 , -y= , o= , 

M1 - M2 2 2 

and a=a-{3--y. Notice that, since 4m2n2-4mini-(Mi-M2) 2 ~4v'm1n1 
(Mi-M2), we have {J-IJ~2v'm1n1. Similarly, fl+o~2v'm2n2. But then 

z(a) 1 
-- > r1 + r2 + (ri2 - r 22) 

M1-M2 Mi-M2 

= v'a2 + 2a({3 - /J) + ({3 - ll) 2 - 4m1n1 

+ v'a2 + 2a(f3 + o) + ({3 + ll) 2 - 4m2n2 - 2a 

~o 
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whether a is positive, negative or zero. 

Thus we must use all minus signs except, perhaps, with the R; corresponding 
to the largestµ;. That is, if jo is chosen so that µ = µio =max ( µ1, · · · , µx} and 
U and V denote, respectively, the functions such that U(a) = K-2-R1 - · · · 
-Rx and V(a) =K-2+Rio-~ir<ioR;for all a?:_µ, we have 

Theorem 10. The problem of solving (7.lA) is equivalent to that of finding 
every a?:_µ such that 

U(a) = 0 or V(a) = 0. (9.1) 

Theorem 10 will form the basis for a routine to maximize G. 

10. THE "GENERAL" CASE (CONT'D.); THE SOLUTION IS UNIQUE 

Since 
, 1 (a - M.; r;) v (a) = - - L: --- - - < o 

a r; a 

for a>µ, U is strictly decreasing and hence can have no more than one zero. 
Moreover, since 

(a~ oo) 
U(a) ~ - 2, 

U will have a zero only if U(µ) ?:.O. 
To obtain an analogous result for V, we need two intermediate lemmas. 

Lemma 3. Suppose that vis a continuous function on the stretch of numbers 
[µ, oo). The following three statements are equivalent: 

1. If v is zero at some number a 1 then there exists an a2 > a 1 and (unless a, = µ) an a 0 
<a1 such that v(a) is positive for a 1 <a<a2 and negative for ao<a<a,. 

2. If vis zero at some number a 1 then v(a) is positive for a>a, and (unless a,=µ) nega­
tive for µ~a<a1. 

3. If v is zero at some number a, then there exists a positive function p on [µ, oo) such 
that the product y = p ·v has positive slope at a,. 

Proof. Part I. Suppose that (1) is true. If v has no zero or only one, then (2) 
is true; so suppose that v has at least two zeros. Since vis continuous it has a 
first such, say a1, and since, by (1), a1 is not a limit of other zeros, v has a next 
such, say ai'. But then, by (1), v must be positive immediately to the right of 
a1 and negative immediately to the left of a1', which is impossible since there is 
no zero between a1 and a1'. Thus (1) implies (2). 

Part II. Suppose that (2) is true. Suppose that vis zero at the number a1 and 
let p(a) = (a-a1)/v(a) for a;;ea1, p(a1) = 1. Clearly p is everywhere positive, 
and y defined by y(a)=p(a)·v(a)=a-a1 has slope 1 everywhere. Thus (2) 
implies (3). 

Part III. Suppose that (3) is true. Suppose that v is zero at the number 
a1 and let p be a positive function such that y = p · v has positive slope at a1. 
Then y(a1) = 0 and there exists a number a2 > a1 and (unless a1 = µ) a number 
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a 0 < a1 such that y is positive between a1 and a2 and negative between a 0 and a1. 
But then v(a) = y(a) / p(a) is positive for a1 < a2 <a2 and (unless a1 = µ) negative 
for ao <a< ai. Thus (3) implies (1). 

A continuous function satisfying (1), (2), (3) will be called quasi-increasing 
if it is zero somewhere, quasi-constant if it is everywhere positive or everywhere 
negative, and quasi-non-decreasing in either case. 

Lemma 4. If µi = µio and v denotes the function defined by 

v(a) = a· V(a) = (K - 2)a + ri - r2 - · · · - rK 

for all a?:. µ1, v is quasi-non-decreasing. And analogously for any otherµ;= µio· 

Proof. Suppose the hypothesis. If v has no zero, it is quasi-constant, so sup­
pose that vis zero somewhere. Then m1n1>0-for otherwise v(a) ?:.2N1+r1-
(a-M1) would be positive. 

Case 1. Suppose that every zero of v is > µi. Let a1 be a zero of v. Without 
essential loss of generality we may suppose that, for all i> 1, r2 ~ r; at a= a1. 
We notice that, for all i, r1 ~r; at a=a1-for otherwise v(a1) would be positive. 
Since µ1>every otherµ; by Lemma 2, the function p, defined by p(a) =r1+r2 
for all a?:. µi, is everywhere positive. Letting y = p · v, we have 

y(a) = (ri + r2 - 2a)N2 + (r1 + r2 + 2a)N1 + A + (r1 + r2)B 

where 

A = M 1
2 

- M2
2 

- 4m1n1 + 4m2n2 

and 
K 

B = L (a - M; - r;). 

But then, since 

1s ?:. 1 for a> µi, and 

I dr; 1 
r; = - = --====== 

da v 4m;n; 
1----

(a - M;) 2 

y'(a) ?:. O·N2 + 4N1 + 2B + (ri + r2) L (1 - r/) 

( 
r1 + r2) = 4N 1 + L 2 - -- (a - M; - r;) 

r; 

for a> µi, y(a1) is positive. Thus, in Case 1, v satisfies (3). 
Case 2. Suppose no zero of v is > µ1. Then a1 = µ1 is the only zero of v and, 

since min1>0, lim,,_µ 1r1' = + oo and v satisfies (1). 
Case 3. Suppose v(µ1) =0 and v has a zero >µ1. But then, by the foregoing 

arguments, v is positive immediately to the right of µ1 and negative immedi­
ately to the left of the first zero after µ1, which is impossible. 



1378 Journal of the American Statistical Association, September 1970 

Figure 2. LOCATION OF a IN THE TWO SUB-CASES 

0 0 

I 
-2+- - - +- - - - - - - - ~ -2+- - - + - - =:::;--.!:!. I ----

I 
I 
I 

Corollary. V is quasi-non-decreasing. 

1 
I 

Hence V has no zero if V(µ; 0) >O and at most one zero if V(µ; 0) <0. In fact, 
in the latter case, V has exactly one zero by Theorem 7 since U has none (see 
Figure 2). Thus we have 

Theorem 11. If U (µ;0) > 0, the maximum of G may be obtained by setting 

( 1) ( m; - n; ) 
Q; = 2 1 + a -R; (i = 1, · · ·, K) 

where a is the unique solution to U(a) = 0-and in no other way. 

Theorem 12. If U(µ;0) 5,0, the maximum of G may be obtained by setting 

( 1) ( m · - n· ) 
Q; = 2 1 + • a • - R; for i r! Jo and 

( 1) ( m · - n· ) 
Q; = 2 1 + • a • + R; for i =Jo 

where a is the unique solution to V(a) =0-and in no other way. 
This completes the theoretical solution of the problem of maximizing L. 

Since U(a)"2::.-l+(N+N;0)/a is positive whenever a<N+N;0, the case 
U(µ;0) >0 will no doubt be encountered more frequently than the case U(µ;0) 

5,0. In fact, the latter case results in a sum P;0 +Q;0 "2::_ l, and indicates that 
country Jo is especially active as sender and receiver. 

The final theorem in this section shows that, although the equations (4.4) 
were needed to establish the feasibility of maximizing L by first maximizing G, 
in actual practice they need not be used at all; instead, one may find the P's 
in exactly the same way as the Q's. 

Theorem 13. If Qi, · · · , QK are defined by the appropriate formulas from 
Theorem 11 or Theorem 12, and Pi, · · · , PK are defined by the correspond­
ing formulas with m, and n, interchanged, then the P's and Q's will satisfy 
(4.4) and hence maximize f. 
(Proof omitted.) 
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11. A PRACTICAL CONSIDERATION: BRACKETING a 

In order to program a computer to approximate the unique a given by 
Theorems 11 and 12, it is useful to have an upper bound for a. That is, in the 
first case an a certain to make U(a) non-positive and in the second an a certain 
to make V(a) non-negative. 

Theorem 14. If a?:.2N, U(a) <O. 

Proof. For then, writing p = 1-2M ;/ a, we have 

R; = ' / 2. [M;(2a - 3M;) - 4m;n;] + p2 

11 a 2 

"2::. • / 2. [M;(4M; - 3M;) - 4m;n,] + p2 

11 a 2 

?:. p 

(with equality only if M, =0); whence U(a) < -2+4N /a5,0. 

Theorem 15. If a?:.N2/2N;0, V(a) >O. 

Proof. For then, writing u=l-(N/a), we have 

R . = ¥2_ [2aN· - N 2 + (m· - n· )2] + u2 Jo • 10 10 10 
a-

?:. <T' 

whence 
1 " N;0 

V(a) ?:. u - 1 + - L..J M, = - > 0. 
a i¢io a 

Thus in the first case a may be sought in the interval [µ;
0

, 2N] and in the 
second in the interval [µ; 0 , N 2/ 2N;J (If µ;0 <N, the first interval can be reduced 
to [N, 2N].) We can then approximate a as closely as we like by successively 
halving the appropriate interval (or by any other suitable technique). 

Finally we note that, although we have not discussed cases in which the 
"senders" may be different from the "receivers," that is, where the country or 
individual corresponding to the ith row is not necessarily the same as that 
corresponding to the ith column, our analysis applies to those cases as well. For 
example, the rows might represent all the married men at some social gathering, 
and the columns their wives, with, say, n;; the number of times that male i 
talks to female J. Then, if we neglect the number of times that a man talks to 
his own wife, we again have a zero diagonal and can proceed as before. 

12. AN EXAMPLE 

In [7, p. 157], Ploog gives the following figures concerning the distribution 
of genital displays among three squirrel monkeys, R, S and U. (The genital 
display is a certain stereotyped signal peculiar to the species.) 
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RECEIVER 

R 

0:: 
~ 
Cl 
~ s 
~ 
I:/;) 

u 

R 

0 

29 

2 

31 

s u 

1 8 9 

0 46 75 

3 0 5 

4 54 89 

That is, during some period of observation, R (monkey 1) made one display to 
Sand eight displays to U-a total of nine displays-while receiving 29 displays 
from Sand two from U-a total of 31 displays received; and similarly for the 
others. We want to know if those figures are consistent with the hypothesis 
that each monkey apportions his displays among the other monkeys entirely 
on the basis of their respective theoretical tendencies to receive displays-the 
hypothesis of sender-receiver independence-or if, on the contrary, some mon­
key shows, so to speak, some favoritism in distributing his displays. 

To answer that question, we must first calculate the value of the parameter 
a, use that value to compute the theoretical tendencies P; and Q;, use the P's 
and Q's in turn to derive expected values, and finally compare those values 
with the observed frequencies to see whether the overall disagreement is great 
enough to cause rejection of the hypothesis of sender-receiver independence. 

The work may be laid out as follows. We calculate the values 

Mi = m1 + ni = 40 M 2 = m2 + n2 = 79 

4m1n1 = 1116 4m2n2 = 1080 

µi = 40 + -v1116 µ2 = 19 + v1080 

< 40 + 34 < µ2 = 113.641016151 

M 3 = m3 + n3 = 59 

4m3n3 = 1200 

µ3 = 59 + -v1200 

< 59 + 35 < µ2 

and then carry out (see table) the iterative procedure, given in the flow chart, 
to approximate the a making R1 ± R2+ R3 equal to K -2 ( = 1), where 

. I( 40)
2 

1116 1( 19)
2 

1200 
R1 = 'V 1 - ---;; - ~, R2 = f 1 - ---;; - ~ ' 

R3 = / ( 1 - 5:y - l~~o . 

RESULTS OF THE ITERATIVE PROCEDURE 

a R1 R, Ra -z,R, 

1 113.641 016 151 .577 ... 0 • 384 ~ .. .961. .. 

2 145.820 508 075 • 688 ... .391. .. .551 ... 1.631. .. 

3 129.730 762 113 .641. •• .285 ••• .482 ... 1. 410 ••• 

4 121. 685 889 132 • 612 ... • 204 ••. .438, .• 1. 256 ... 

5 117.663 452 642 1.154 .•• 

6 115.652 234 396 1. 089 ... 

7 114.646 625 274 1.047 ••• 

8 114.143 820 712 1.019 ... 

9 113.892 418 432 l.001 451. •• 

10 113. 766 717 291 .989 159 ••• 

11 113.829 567 861 .995 768 ... 

12 113. 860 993 14 7 .998 702 ... 

13 113,876 705 789 1. 000 100 ... 

32 113,875 558 108 .578 621 1313 .035 458 7918 .385 920 0779 1.000 000 0010 

33 113,875 558 093 .578 621 1312 .035 458 7907 .385 920 0778 .999 999 9997 

34 113.875 558 100 .578 621 1313 .035 458 7912 .385 920 0778 1.000 000 0003 

35 113.875 558 096 .578 621 1312 .035 458 7910 .385 920 0778 1,000 000 0000 

We begin with a= µ2 since that is the largest µ;-any smaller positive value of 
a would make R2 imaginary. (Incidentally, we see here the purpose of the 
absolute-value signs in the flow-chart definition for R;: although a= µ2 makes 
R2 = 0, in practice a round-off error can make the radicand negative.) At the 
end of Step 1, "'2R; is < 1, so we must hereafter use the same sign with R 2 as 
with Ri and R3. (If that first °'2R; had been > 1, we would thereafter have to 
use the opposite sign.) For Step 2, we use the average between 113.641 · · · , 
which is too small, and 2N = 178, which is too large. At the end of Steps 2, 3, 4, 
5, 6, 7, 8, and 9, "'2R; is > 1, so for the next a in each case we go half-way back 
to the last a making "'2R , < 1-namely 113.641 · · · . At the end of Steps 10, 11 
and 12, "'2R; is < 1, so in each case we average the current a with the last one 
making "'2R;> 1-namely 113.892 · · · . At the end of Step 13, °'2R; is > 1 so 
we go half-way back to the last a, 113.860 · · · . We continue in this fashion till 
we find a correct to the desired degree of accuracy . 

(The process can be speeded up considerably if, rather than always choosing 
the midpoint of the interval remaining, we use linear interpolation at each step. 
This is of some importance if the work is done on a desk calculator. Moreover, 
if the calculator contains a few storage registers, we can dispense with writing 
down any intermediate results.) 
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From the final value of a, and the formulas 

P; = (1/2) (1 + n; ~ m; - R,) and Q, = (1/ 2) ( 1 + m;: n ; - R;), 
we have 

Pi=.114 092 7618 
P2=.794 014 4115 
Pa=.091 892 8267 

Qi=.307 286 1070 
Q2=.170 526 7975 
Qa=.522 187 0955 

and t = . 781 554 8963. 

(Of course, we have given far more significant figures than are warranted by a 
sample size of 89.) Then, using the formulas 

P·Q 
E ;; = p ;; X 89 = - ' -1 

X 89 (i r£ j) and E;; = 0, 
t 

we find the expected values 

0 2 .216 6.784 

27.784 0 47 .216 

3.216 1.784 0 

which, when compared with the observed data, give a x2 value of 2.257 (df = K 2 

-3K+l=l), and, hence, a fiducial level of 86.7 percent (P=.133) . In other 
words, the discrepancy between the observed and the expected values is not 
significant, and the data are adequately explained by the null hypothesis. 

It is interesting to note that, if one makes the predictions on the basis of the 
naive approximations P;= n;/ 89 and Q;=m;/ 89, he will find a deviation from 
observed which is very highly significant (P < .001), and may be led (incor­
rectly) to reject the hypothesis of sender-receiver independence. This of course 
illustrates the general principle that a model can be rejected only on the basis 
of the best possible values of its parameters. 
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