Dedication

This volume is dedicated to Carly and Jake Butynski, the children of Jan Kalina and Tom Butynski.
Family CERCOPITHECIDAE

Papio ursinus (probably ursinus and griseus combined)
TL (♂ ♂): 1450 (1320–1570) mm, n = 9
TL (♀ ♀): 1190 (1080–1160) mm, n = 5
T (♂ ♂): 725 (598–840) mm, n = 9
T (♀ ♀): 585 (556–610) mm, n = 5
HF (♂ ♂): 223 (217–236) mm, n = 9
HF (♀ ♀): 184 (176–194) mm, n = 5
E (♂ ♂): 58 (54–65) mm, n = 8
E (♀ ♀): 50 (44–52) mm, n = 5
WT (♂ ♂): 31.8 (27.2–43.5) kg, n = 9
WT (♀ ♀): 15.4 (14.6–17.2) kg, n = 5

Key References Barret et al. 1999; Bulger 1993; Cheney et al. 2004; Cowlishaw 1997a; Henzi et al. 1997b; Whiten et al. 1991.

Guy Cowlishaw

Papio cynocephalus YELLlow BAboon
Fr. Babouin cynocephale; Ger. Gelber Pavian

Taxonomy Polytypic species. The Yellow Baboon presently retains its own species designation, Papio cynocephalus, with three subspecies—Central cynocephalus, Ibean ibeans and Kinda kindae (Grubb et al. 2003). Some researchers suggest separating baboons into two species, Papio hamadryas for the Hamadryas or Sacred Baboon, and P. cynocephalus for the Savanna Baboons (Grobos 2001). Under this construct, the Yellow Baboon would be a subspecies of Savanna Baboon. Alternatively, Jolly (1993) suggests lumping all baboons under one species, P. hamadryas, which would result in at least five subspecies. Synonyms: antiquorum, babouin, basileus, flavidus, ibeans, jubilaeus, kindae, langheli, ochraceus, pruinosis, rhodesiae, rubei, streptius, sublutea, thoth, variegata. Chromosome number 2n = 42 (Romagnou 2001).

Description Slender baboon with dorsum light brown to yellowish-brown to pale reddish-brown, contrasting with whitish ventrum. Sexes alike in colour of pelage. Adult ♂ weigh about twice as much as adult ♀ ♀. Adult ♂: skull not flattened behind the supraorbital ridge. Head appears pointed when viewed from the front, sometimes with a crest. Forehead not parallel with the angle of the muzzle (Alberts & Altmann 2001). Muzzle predominantly bare, greyish to black, often with varying amounts of sparse and patchy white pelage. Nostrils set back from the lips. Mane (= cape = mantle) absent or greatly reduced relative to other Papio spp. Dorsum, tail and outer limbs range from light brown to yellowish-brown to pale reddish-brown. Ventrum, inner limbs and cheeks lighter, almost white, and pelage more sparse. Pelage long, especially on sides. Skin grey to black on primarily bare hands and paracallistics, but paracallistics of Kinda can be rosy-pink both on adult ♂ ♂ and adult ♀ ♀ (Y. de Jong & T. Butynski pers. comm.). Skin on rest of body, in densely pelaged areas, and in armpits and crotch, ranges from grey to pinkish or almost white, often in a splotchy pattern. Tail tends to be tapered with a sharp bend or hook between a proximal ascending portion and descending, distal one; tail shape is highly individually variable, however, and is useful in individual recognition. Angle of tail becomes more vertical during ontogeny (Hausfater 1977). Scrotum grey. Paracalllosal skin fused.

Adult ♀ ♀: paracalllosal skin split vertically. Nipples pinkish and button-like until ♀ ♀ has nursed an infant. Nipples of multiparous ♀ ♀ are dark, and the two nipples tend to differ considerably in length and often in colouration.

Immatures: infants of Central and Ibean, but not Kinda, have a black natal coat that is characteristic of all other baboon species. According to Groves (2001), Kinda newborns are unique among baboons in that the coat is reddish, not black. Kinda newborns at Mahale N. P., Tanzania, at the north-east corner of the range for this subspecies, have whitish pelage, pink muzzle and ears, but older infants have a reddish-brown coat. Infants in transition between these two pelage colours are pale yellowish-orange (Y. de Jong & T. Butynski pers. comm.). Between 6 and 12 months of age pelage gradually changes to the species-typical coat. Muzzle, ears, ischial callosities, paracalllosities and scrotum are pink, and the ischial callosities are split in both sexes. Between 7 and 15 months of age, skin colour, except for scrotum, changes to the grey of adults and the paracalllosities of ♂ ♂ fuse (Altmann et al. 1981). Body mass growth is approximately 5 g/day for both sexes through 3–4 years of age, after which ♂ ♂ experience an adolescent growth spurt (Altmann & Alberts 2005).

Numerous photographs of the three subspecies of *P. cynocephalus* at many sites in Kenya and Tanzania are available at: www.wildsolutions.nl

Similar Species

Distribution

Two areas of Yellow–Olive hybridization are known. One runs through Amboseli N. P., SC Kenya, and the surrounding area, extending north and south of the Amboseli Basin. Genetic models and previous surveys suggest that the hybrid zone is relatively narrow and historically stable throughout this region, with Olive Baboons to the west of Amboseli and Yellow Baboons to the east (Charpentier et al. 2012; see also Maples & McKern 1967, Altmann & Altmann 1970, Samuels & Altmann 1986, Alberts & Altmann 2001).

A second, broad, clinal hybrid zone occurs between the Laikipia Plateau in C Kenya and the Lower Tana R./Indian Ocean. Thiscline appears to start just to the north-east, east and south-east of Mt Kenya and covers an upper altitudinal range of from roughly 1000 m asl at Mwea National Reserve (to the south of Mt Kenya) to roughly 600 m asl at Meru N. P. (to the north of Mt Kenya). The zone then continues south-eastwards towards the lower Tana R. to at least 30 m asl, perhaps to the Indian Ocean. Baboons in this >200 km wide region are intermediate and cannot be readily allocated to either Olive or Yellow Baboons. As one moves south-eastwards towards the Kenya coast, however, the baboons become increasingly Yellow-like in their phenotypes (T. Butynski & Y. de Jong pers. comm.).

A potential Yellow Baboon–Chacma Baboon *Papio ursinus* hybrid zone exists in the Zambezi R. Valley. Some confusion exists as to whether Central or Kinda are in areas of Zambia. In the Zambezi R. Valley the Yellow Baboon range is thought to be only north of the Zambezi R., whereas the predominantly southern range of the Grey-footed Chacma Baboon *P. u. griseipes* extends north of the Zambezi R. as well, perhaps creating a hybrid zone there.

Habitat

Primarily in open and woodland savanna. Associated with miombo (*Brachystegia* spp.) woodland over much of the range. In East Africa, Fever Trees *Acacia xanthophloea* and Tortilis Trees *Acacia tortilis* are used as sources of food and shelter. Yellow Baboons use woodland groves for sleeping at night, as well as for sources of shade during hot days. A water source within a day's walk appears to be necessary (Altmann & Altmann 1970). Distribution between wet and dry season lengths varies across the range. Most parts of the range experience one long wet season and one dry season. However, the Amboseli area usually experiences two wet and two dry seasons: one long and one short (Altmann et al. 2002). Mean annual rainfall over the range of the Yellow Baboon varies from ca. 320 mm (e.g. Garissa on the Tana R., EC Kenya) to ca. 1200 mm (e.g. Mombasa, SE Kenya; T. Butynski pers. comm.). Mean annual rainfall at two of the main Yellow Baboon study sites is as follows: 348 mm in Amboseli N. P. (over 25 years; Altmann et al. 2002); 842 mm in Mikumi N. P., SC Tanzania (over 20 years; Norton et al. 1987). Yellow baboons range in altitude from sea level to at least 1800 m (Mahale Mts, WC Tanzania; Kano 1971, T. Butynski & Y. de Jong pers. comm.) and to at least 1900 m in the Uluguru Mts, SC Tanzania (Rovero et al. 2009). Altitude is ca. 1100 m at Amboseli and 450–740 m at Mikumi.

Abundance

Abundant in parts of their range, with densities of 10–60 ind./km² (Wolfheim 1983). Population density in the