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Abstract

	Many social groups are made up of complex social networks in which each individual associates with a distinct subset of its groupmates. If social groups become larger over time, competition often leads to a permanent group fission. During such fissions, complex social networks present a collective decision problem and a multidimensional optimization problem: it is advantageous for each individual to remain with their closest allies after a fission, but impossible for every individual to do so. Here, we develop computational algorithms designed to simulate group fissions in a network theoretic framework. We focus on three fission algorithms (‘democracy,’ ‘community,’ and ‘despotism’) that fall on a spectrum from a democratic to a dictatorial collective decision. We parameterize our social networks with data from wild baboons (Papio cynocephalus) and compare our simulated fissions with actual baboon fission events. We find that the democracy and community algorithms (egalitarian decisions where each individual influences the outcome) better maintain social networks during simulated fissions than despotic decisions (driven primarily by a single individual). We also find that egalitarian decisions are goodbetter at predicting the observed individual-level outcomes of observed fissions, although the observed fissions often disturbed their social networks more than the simulated egalitarian fissions.
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Introduction

Links between social bonds and fitness in multiple species suggest that the maintenance of bonds is an important target of selection1-4. However, even in species that build and maintain strong bonds, social groups may fission, leading to the dissolution of social bonds. While fissions may benefit individuals, for instance by reducing intragroup competition5-11, increasing resource availability12-14,13, improving breeding opportunities15-17opportunities14-16, or maintaining high relatedness within social units18units17, it is unlikely that every individual can maintain its preferred set of social bonds during the fission. What strategies can individuals take to achieve the complicated collective decision of splitting up a social network? How can individuals best maintain social ties during group fissions, even when networks are complex?
Despite the complexity of fission decisions at the individual level, common patterns may emerge at the level of the social network during group fissions. Network theoretic approaches are a vital part ofto studying animal sociality19sociality18, including group fissions. In particular, network-theoretic models have studied how nutritional needs interact with sociality to favor fission-fusion societies (in which frequent temporary fissions and fusions occur) or permanent social group fissions14fissions13, and empirical studies have shown that resource availability shapes fission-fusion dynamics12,13. Network approaches have been extended to understand how grooming relationships in primates influence social group cohesion and whether a permanent fission will occur20occur19,20, often focusing on the immediate benefits of fissions. 
A different, albeit related, question is how different decision processes – for instance processes driven by one individual versus many – influence the fission and its outcome. Collective decision theory, which has studied how democratic versus despotic decisions affect animal movement, provides a means to understand these decision processes21-27. Collective decision theory has also addressed fission processes in animal social groups, but has focusedgroups13,19, focusing on fission-fusion societies rather than permanent fissions28societies28-30. Permanent fissions are different from temporary fissions for two reasons. First, because group fissions in fission-fusion societies are transient, fission decisions do not permanently separate individuals from their allies, making them lower-stakes than permanent fissions. Second, temporary fission events appear to represent highly flexible and dynamic short-term responses to ephemeral changes in the spatial distribution of resources; in contrast, permanent fissions represent fixed, long-term changes that presumably require different information and whose outcomes have different implications for the social group12,13group13,19. Thus, existing theory on fission-fusion dynamics cannot readily inform an understanding of permanent social group fissions.
	Group-living primates provide excellent case studies of permanent group fissions from a network perspective, as social networks influence both group fissions13fissions19 and collective decisions31 in some primates. Most primates live in stable social groups rather than fission-fusion societies32-34, so the decision of which post-fission group to join during a permanent social group fission will influenceinfluences an individual for the remainder of its life. Further, primate group fissions appear not to follow simple, universal rules, and multiple processes might determine post-fission group membership. For instance, permanent group fissions in matrilineal societies (e.g., baboons and macaques) are commonly characterized by an attempt to remain with matrilineal kin6,35-38. However, this general rule is not universally followed34,35,38,39. In one study of baboons, individuals appeared to make decisions that improved their social dominance rank following the fission40. In contrast, in a study of four different fissions in one population of savannah baboons, Van Horn and colleagues34 concluded that female baboons follow a flexible decision-making process that maximizes their ability to maintain close social ties with close kin. They found that female baboons remained with close maternal kin if those were abundant, but females without close maternal kin remained with close paternal kin or non-kin to whom they bonded.  Thus, even in the same population or social group, individuals vary in which types of bonds are maintained or broken during permanent fissions, indicating that a global, network-centric view may provide insights that individual-level analyses cannot. 
[bookmark: _Hlk80169736]	Here, we combine social network analysis and collective decision theory to understand how different collective decision processes produce permanent social group fissions. We do not consider the causes ofwhy fissions occur, which has been addressed extensively5,6,9,12-1514,16,17,18,28,40. Instead, we developfocus on how fissions occur19 by developing computational algorithms that simulate group fissions, using three different decision processes that range from democratic and community-based decision processes (i.e., ‘egalitarian’ processes in which multiple individuals contribute to the outcome) to a despotic process (in which a single individual dominates the process). We make comparisons against a random algorithm and an ‘efficient non-behavioral’ algorithm that set benchmark expectations for disruptive and non-disruptive fissions, respectively. We parameterize social networks with empirical data from the Amboseli baboon population41. We ask three questions about simulated and observed fission outcomes, two that concern network-level metrics (percentage of bonds broken, weight of bonds broken, etc.), and one that concerns individual-level outcomes: (1) How well do the observed fissions maintain social network structure by minimizing the number and strength of bonds broken (i.e., how ‘efficient’ are observed fissions)? (2) How well do the simulated fissions, created with strategies from our collective decision algorithms, maintain social network structure by minimizing the number and strength of bonds broken (i.e., how ‘efficient’ is each algorithm)? (3) How well does each collective decision algorithm predict which specific bonds were broken by the baboons during the observed fissions (i.e., how well do the algorithms match observed data)? Answers to the first two questions characterize how disruptive different types of fissions are to social networks. Importantly, however, an algorithm that disrupts the network to a similar degree as an observed baboon group fission may not disrupt the network in similar ways. Therefore, while the first two questions contextualize the efficiency of real fissions, the third question is key for evaluating which algorithm best matches the outcomes of the observed fissions.


Methods

Case Study: Amboseli Baboons

Since 1971, the Amboseli Baboon Research Project has recorded data on group membership and social relationships for hundreds of baboons in multiple social groups41 that have undergone seven natural fission events. The population consists primarily of yellow baboons (P. cynocephalus) with some admixture from anubis baboons (P. anubis)42-44.  Group membership is assessed during near-daily censuses of animals in study groups, with animals recognized on sight45-48. Social dominance ranks are assigned monthly and separately for each sex based on the outcomes of dyadic agonisms between all pairs of individuals in the same social group, with highest ranking individuals having rank 145,49. Specifically, we create an N x N matrix of individuals of each sex; each cell in the matrix contains a number that represents the number of wins that month by the individual represented in that row over the individual represented in that column. Individuals are ordered so that entries below the diagonal are minimized. This order is the ordinal ranking of individuals49.
[bookmark: _Hlk81990647]Grooming is the most significant investment that adult baboons make in social affiliations and thus grooming relationships are a reliable proxy for social relationships in dyads (hereafter, social bond strength; see refs50discussed in50-52). Grooming was recorded whenever one animal picked through the fur of another animal and appeared to remove ectoparasites and debris. Grooming was considered to have ceased if the hands of the groomer left the body of the groomed animal for further discussion).more than 5 seconds45. Grooming data were collected using a sampling protocol designed to avoid biases from uneven sampling. Observers attempted to record all occurrences of grooming in their line of sight while simultaneously carrying out random-order, 10-minute focal animal samples on adult females and juveniles. This sampling procedure ensured that observers continually moved to new locations within the group and observed all adult females and juveniles on a regular rotating basis52. 
[bookmark: _Hlk76539685]To parameterize social networks for each of the seven baboon groups that fissioned, we used grooming data from two years prior to the start of each fission event: the inherent sparsity of the grooming data mean that reliable social networks cannot be obtained with shorter stretches of time. Further, theThe strongest bonds (those most likely to drive fission decisions) are also the most stable51 and thus unlikely to change dramatically over the two-year period. We tallied the number of grooming events between all pairs of adults in the group (age 5 and older) and divided by the largest number of grooming events for a single dyad within the group to normalize values between 0 and 1. We then retained only bonds between pairs that had groomed at or above the average level for a given group (typically the strongest 25-30% of bonds).; in supplemental analyses, we also considered ‘unfiltered’ networks with all bonds retained; figures S1-S3). We assigned edge weights on the network based on bond strengths. We removed from the network the subset of individuals that had no bonds of above-average strength (46 of 327, ~14% of individuals), leaving connected networks. We removed bonds that were below-average in strength as they are less stable51, thus primarily adding noise to our results. Qualitative trends remain unchanged by using all grooming interactions to parameterize social networks (figures S1-S3). Observed pre-fission networks are shown in figure 1.

Fission algorithms used in simulations

We sought to understand differences among collective decision processes in their consequences for fissions of complex social networks. We developed three algorithms representing different decision processes along a spectrum from democratic to despotic decisions (figure 2) to determine how thefission outcomes of the fission depend on who controls the process. In addition, our random and ‘efficient non-behavioral’ algorithms setprovide a basis of comparison by setting benchmark expectations for disruptive and non-disruptive fissions, respectively, to provide a basis of comparison. Each algorithm is described in detail below. To ensure realistic social networks, we applied each algorithm to the actual pre-fission baboon networks (figure 1).  

Democracy Algorithm

	Following previous work53, we define a decision as ‘democratic’ if each individual controls their own outcome regardless of their social dominance rank; this is not meant to imply that individuals vote on the outcome, but that their behavior is self-determined regardless of rank. We consider the democracy algorithm to be a type of egalitarian decision-making, along with the community algorithm (below). First, the algorithm selects two individuals randomly from the pre-fission group and assigns them as the first members of daughter group 1 and daughter group 2. Then, individuals that are not yet assigned a daughter group are successively selected from the pre-fission group in a random order and assigned deterministically to the daughter group in which they have the highest average bond strength to individuals already in that group (figure 2). If a selected individual has no bonds with any individual in either daughter group, they are not yet assigned a group and return to the pool of individuals needing assignment. Since our networks are connected, these individuals eventually have connections to members of one or both daughter groups, so this procedure eventually assigns every individual to a daughter group.

Community Algorithm

	We consider the community algorithm to be a form of egalitarian decision making (together with the democracy algorithm) that involves subsets of bonded individuals within the social group. First, the algorithm detects network communities (sets of individuals that share more bonds with one another than the rest of the network; usually 5-10 individuals in our networks) using Mathematica’s54 centrality-based detection of community structure. Then, entire communities are assigned to daughter groups in a procedure analogous to the democracy algorithm (figure 2). That is, two communities are selected at random and assigned to two different daughter groups; then the remaining communities are successively selected in a random order and assigned deterministically to the daughter group with the highest average number of bonds per individual for all bonded pairs between the two communities. Though still an egalitarian collective decision, the number of independent entities involved in making the decision are greatly reduced relative to the democracy algorithm, making it intermediate between the democracy and despotism algorithms. 

Despotism Algorithm

[bookmark: _Hlk80170016]	The despotism algorithm allows the individual with the greatest sum of bond weights (the despot) to dictate the fission. We chose highly bonded (rather than dominant) individuals as the despot both because such individuals play a key role in collective decisions55 and because dominant individuals appear not to have an outsized role in collective decisions in baboons25. UsingIn a supplemental analysis, we instead use the dominant female with highest social dominance rank as the despot did not qualitatively change our results (figures S4-S6). To apply this algorithm, firstFirst, all individuals with direct social bonds to the despot are selected; they are hereafter said to be “distance one” from the despot since the shortest path in the network from the despot to any of these individuals is one bond long (see yellow shading in figure 2: Despotism step 2). Their bond strengths to the despot are used as the probability that they will joinare randomly assigned to the despot’s daughter group (daughter group 1). Assignment to daughter group 1 is stochastic, and ifIf an individual distance one from the despot is not assigned to daughter group 1, their bond to the depot is  severed. This creates a revised network in which individuals that did not join daughter group 1 lack bonds to the despot, but all other bonds are retained. Next, using this revised network, all individuals connected to those that joined the despot’s daughter group in the previous step (distance two; see yellow shading in figure 2: Despotism step 4) are considered. The probability that individuals of distance two from the despot are selected to join daughter group 1 is taken to be the product of bond strengths between the distance-two individual and the connecting individual, multiplied by the bond strength between the connecting individual and the despot. Again, distance two individuals not assigned to daughter group 1 have their bonds to individuals in daughter group 1 removed. This procedure continues until the revised network is no longer connected. At that pointThen, all individuals not chosen for daughter group 1 are assigned to daughter group 2. Since there are more weak bonds than strong bonds, most individuals are unlikely to join the despot’s group, resulting in a group of only a few individuals. Thus, for the despotism algorithm, bond strengths were log-transformed prior to normalization to produce daughter groups of more realistic size. 

Random Algorithm

	The random algorithm represents a null expectation for how fissions proceed if theythat are random with respect to network structure; random fissions will be highly disruptive to social networks. The random algorithm assigns each individual from the pre-fission group into daughter group 1 or 2 randomly and with equal probability (figure 2). Individuals in the same daughter group who were bonded before the fission retain their original bond strengthbonds; other bonds are severed.

Efficient non-behavioral network bisection

	The efficient non-behavioral network bisection provides a benchmark for a non-disruptive fission not linked to a collective-decision process. This algorithm makes use ofuses Mathematica’s54 built-in “FindGraphPartition” function that has been optimized to minimize the number and weight of severed bonds while producing approximately equally sized daughter groups (figure 2). We use the efficient non-behavioral network bisection as a basis of comparison as a fission algorithm that has been optimized for efficiency without invoking a collective-decision process, not to make any claims about real organisms.

Assessing the algorithms: efficiency and individual-level outcomes

	The democracy, community, despotism, and random algorithms all have a stochastic component, either in the order in which individuals are considered or the assignment process. Thus, each produces and thus produce variable results (even on the same starting network).. We applied these four algorithms 100 times to each of the seven, pre-fission baboon social networks, simulating 100 fission events inon each network for each algorithm. Using these simulated fissions, we usedconsidered six metrics (Table S1) of fission ‘efficiency’ that captured different aspects of how much each algorithm disturbed the pre-fission social network: (i) percentage of bonds broken, (ii) average weight of broken bonds, (iii) sparsity of the fission, (iv) average weight of maintained bonds, (v) average betweenness centrality of broken bonds, and (vi) average betweenness centrality of maintained bonds. 
[bookmark: _Hlk76988317]We compared the efficiency of the observed baboon fissions to the efficiency of the benchmarks for efficient and inefficient fissions, ‘efficient non-behavioral’ and random respectively. We then assessed the degree to which different collective decision processes disturb social networks during a group fission by visually checking for obvious differences in these six efficiency measures across the algorithms. We avoided performing significance tests on our simulations because 1) statistically significant trends with miniscule effect sizes can be misleading in simulation studies due to arbitrarily large sample sizes and 2) the null hypothesis of no difference between algorithms is known to be false56.using a two-way ANOVA with main effects of “algorithm” and “group”. We considered pairwise comparisons between the algorithms to determine whether each pair differed in their efficiency. Large sample sizes mean that statistically significant results are easy to obtain in simulation studies, so significance metrics are not reliable indicators of a biologically relevant differences56. Thus, we focus on a measure of effect size () which can be interpreted as the amount of variation explained by the different algorithms57 and ensures that differences between the algorithms are biologically meaningful56 (Table S2). We also examined changes in how tightly bonded groups were before and after simulated fissions, but did not find clear trends (Appendix S1). We examined how each algorithm performed on caricatured social networks to determine the importance of network topology (Appendix S2).
	Finally, we compared the simulated fissions to the individual-level outcomes of the observed fissions of each group – which specific bonds were broken versus maintained – to assess how well each algorithm predicted observed outcomes for each bond. To do so, we calculated the average percentage of bonds, across the 100 simulated fissions, that each algorithm correctly assigned as either broken or maintained. Again, we visually checked for obviousassessed differences between the algorithms.using ANOVA and . Analyses were performed using Mathematica54.

Results

How efficient were the observed baboon fissions?

[bookmark: _Hlk76988563][bookmark: _Hlk76988607]Observed fission events were consistentlytypically more efficient than random but less efficient than the efficient non-behavioral network bisectionalgorithm (our benchmark for an efficient fission; between the dashed lines on figures 3 and 4, Table 1). Observed fissions most resembled the despotism algorithm in terms of four measures of efficiency, (Table S3), but we argue in the discussion (based on individual-level outcomes presented below) that this is unlikely to be informative about the decision process of baboons. In only three out of seven of the observed fissions did broken bonds show a markedly higher centrality than maintained bonds (Table S2). 

How efficient were each of the five fission algorithms?

	The democracy and community algorithms were among the most efficient algorithms by all measures: in percentage of. The fewest bonds were broken, strength of bonds broken, and sparsity of the fission, they were at least as efficient as by the community algorithm, followed by the efficient non-behavioral algorithm (Table S4), democracy, despotism, then random (compare clusters of histograms to the dashed line at 0 in in figure 3, figure 4, figure S7). The ), with relatively large (η2 ≥ 0.1) differences between all pairs of algorithms (Table S2). The strength of bonds broken (figure 4) and sparsity of the fission (figure S7) showed the same directional trends with algorithm effect sizes (η2 ≥ 0.12) except in two cases (for strength of broken bonds, despotism was more similar to both random and democracy; η2 = 0.04; Table S2). Thus, the despotism algorithm broke more bonds and stronger bonds than other nonrandom algorithms (egalitarian fissions (the despotism cluster falls above clusters for democracy and community in figures 3 and 4). The despotism algorithm also disturbed the network more as measured by its sparsity metrics ), but fewer and weaker bonds than the democracy and community algorithms; these two egalitarian algorithms were similar to the efficient non-behavioral network bisectionrandom fissions (despotism cluster below the dashed line at 1 in the sparsity of the fissions they produced (figure S7). The average weight of maintained bonds was approximately the same for all algorithms (figure S8), while the random algorithm disturbed the network as much as or more than any other algorithm in terms of all figures 3 and 4). Remaining measures of efficiency (figures 3, 4, S7). 
All non-random algorithms tended to break bonds with highstrength of maintained bonds and betweenness centrality that likely sit between tightly bonded subgroups. A fission can be efficiently completed by breaking relatively few bonds that have high betweenness centrality; in contrast, more bonds must be broken to complete a fission if they have low centrality. The centrality of broken bonds was greatest in the democracy and community algorithms (figure S9), while none of the algorithms differed with respect to the centrality of and maintained bonds (figure ) did not show large, biologically-relevant differences between the algorithms (η2 ≤ 0.02 in all pairwise comparisons, except that the community algorithm broke bonds with higher betweenness centrality than the despotism (η2 = 0.03) and random (η2 = 0.05) algorithms; Table S2; figures S8-S10). Table S2 summarizes efficiency metrics
Recalculating social bonds to include all dyads that groom (not only bonds of above average strength) did not change qualitative trends with percent and strength of bonds broken still showing mostly large effect sizes and the same ordering of the efficiency of the algorithms (figures S1-S2). The same was true using the dominant female (not most bonded individual) as the despot (figures S4-S5). Table S5 summarizes efficiency metrics, with Table 1 showing the mean and most efficient algorithm(s) for each. Network topology plays a large role in determining the efficiency of a fission (Appendix S2).

How well did each algorithm predict observed individual-level outcomes?

	The democracy, community, and efficient non-behavioral egalitarian algorithms predictedpredict the individual-level post-fission group membership more accurately than the  outcomes better than despotism algorithm(η2 ≥ 0.04) in six of the seven fissions. Further, for three of, comparable to the seven observed fissions (Dotty, Linda, Lodge), the community algorithm matched the observed outcome better than the democracy algorithm (in the other three they appeared equal; efficient non-behavioral algorithm (figure 5). Finally, in each fission except for Hook’s, all of the; Table S2). All non-random algorithms predicted individual-level group membership outcomes better than the random algorithm.  (η2 ≥ 0.08), in each fission except Hook’s (Table S2). These conclusions are insensitive to using the dominant individual as the despot (figure S6). The algorithms perform more similarly to one another (η2 ≤ 0.01) and are generally worse at predicting individual outcomes (figure S3) if we use unfiltered social networks, likely because such networks retain weak bonds, which may be ephemeral and are difficult to measure reliably51.

Discussion

Our network theoretic approach highlights the complexity of social group fissions. Each individual in the group has a particular interest in how the fission proceeds, which often conflicts with others’ interests. A fission is therefore a complex collective decision that must address distinct individual interests. As a result, fissions are  and high-dimensional, discrete optimization problems, and individuals. Individuals presumably achieve the best outcome if they can coordinate and cooperate in their actions to form post-fission groups. Our theoretical results demonstrate that fissions that allow each individual some control over their own actions (egalitarian fissions) are less disruptive to social networks. Further, in the Amboseli baboons, social bonds were relatively successfully maintained during fissions, and observed fissions were much more efficient than random fissions. Thus, individual and collective action produced observed outcomes that were, on average, favorable for the maintenance of social bonds relative to random fissions. However, the observed fissions were less efficient at maintaining social networks than the most efficient algorithms: the baboons tended to break more bonds, bonds of higher weight, and bonds of lower betweenness centrality,and stronger bonds than the most efficient algorithms, and they failed to achieve fissions with low sparsity. Below we discuss answers to each of the questions we posed in this study: how efficient were the observed fissions, how efficient were the five fission algorithms, and which algorithms best predicted the observed fissions in terms of individual bonds? We also discuss why the baboons failed to achieve highly efficient fissions and the apparent paradox that the egalitarian algorithms best predicted the baboons’ individual-level outcomes but were not the closest match for network-level outcomes.

How efficient were the observed fissions and the five fission algorithms?

Egalitarian decision processes, in which each individual influences the outcome, were more efficient (less disruptive) than other algorithms at splitting social networks. In simulated fissions, the democracy and community algorithms performed as well as or better than all other algorithms on all of our measures of efficiency (Table 1). 
We believe this is the first study to examine the efficiency of both simulated and observed fissions of social groups in a natural animal population. Baboon fissions were not nearly as efficient as they could have been; their observed efficiency most closely matched the despotic algorithm, the least efficient of the non-random fission algorithms. We offer two, non-mutually exclusive possibilities for why this is the case: 1) the baboons were unable tocannot achieve the efficiency of the most efficient algorithms or 2) the baboons were usingused additional information not included in our analysis during group fissions.
Supporting the possibility that the baboons simply could not split their social network as well as our algorithms is the observation that actual baboon fission events can take many months to complete, implying that coordination may be difficult to achieve in collective decisions about group fission34. Further, communication in baboons during collective action relies on simple behaviors that do not allow for the complex planning thought to be key for coordination in humans57-59humans58-60. Finally, individuals may make mistakes and end up in post-fission groups in which they have relatively few bonds, while our egalitarian algorithms do not include such errors. If these factors play a large role in group fissions, perhaps baboons could not reach the higher efficiency obtained by the egalitarian algorithms.
The second possible explanation for why baboon fissions were not asless efficient, by our measures, as some of our algorithms is that the baboons used information that we did not include in the social networks. Since the observed fissions were more efficient than random (figures 3 and 4), it is clear that baboons do not completely ignore the structure of the social network. However, matrilineal kin often remain together during social group fissions in cercopithecine primates6,35,37,38 and individuals may sometimes attempt to leave others of higher rank during fissions40. It is thus possible that baboon fission events could be better predicted by increasing edge weights based on relatedness or decreasing edge weights to higher ranking individuals. Still, in Amboseli fissions, multiple matrilineal kin groups are typically split and dominance rank is not a key driver in the fission outcome, indicating that neither relatedness nor rank always predict fission patterns34. Another source of information lacking in our analysis is data on fine-grained social interactions in the weeks and months preceding and during the fission. Our data represent relatively coarse-grained grooming data over many months to infer the social bonds at the time of fission, whereas fine-grained data could reveal changes in social bonds over time that better reflect the social network at the time of the fission. These imperfections in data sampling may have contributed to the observed fissions appearing less efficient than they truly were.
By analyzing hypothetical social networks, we found that initial network topology plays a strong role in determining the fission’s efficiency of a fission (Appendix S2). Our analysis of caricature topologies suggests that topological differences might explain some of the variability in the efficiency of fissions. For instance, all nonrandom algorithms were most efficient at breaking up the linear network and least efficient at breaking up the complete network (Figure S6, Figure S7).Figures S11 and S12). This may explain a striking feature of the simulated Lodge group fissions: all nonrandom algorithms (including despotism) and the baboons themselves did quite well at efficiently splittingsplit the Lodge group network (e.g., breaking ~10% fewer bonds than any other fission; Table S2S5). The Lodge group lived in a resource-rich environment and also exhibited a relatively simple (unusually linear) social network structure (figure 1 and Table S3S6; note its clustering coefficient, diameter, and density). Linear networks are easier to split than more complex social networks, which could explain the high efficiency of fissions of the Lodge group network.

How well did each algorithm predict observed individual-level outcomes?

Because social bonds are important for baboon survival52,6061, baboons should be motivated to maintain their social bonds, in turn leading individuals to attempt to influence fission outcomes, producing more egalitarian fissions. Indeed, our analyses show that the community and democracy algorithms more accurately predicted which individual bonds were broken versus maintained than the other decision processes that we tested (Figure 5, Table 1). 
	The community algorithm collapses the network into 5-10 vertices representing the group’s communities. These communities that then split up the social network, simplifying collective decision process compared to each of the 30-50 individuals in the group making distinct decisions. Anecdotal evidence supports the idea that the community algorithm may be the closest to actual fission events in baboons. Ron61Ron62 observed that before completing a fission, individuals arranged themselves into subgroups, a pattern also seen in Amboseli (unpublished data). Van Horn et al34 hypothesized that one fission resulted when a subset of individuals with shared interests joined forces. These examples might explain why the community algorithm mirrors the way baboon fissions proceed in nature. It may also be the case that baboons are using a combination of strategies (e.g., community in combination with democracy, or democracy with the despot having unequal power in the fission), driving heterogeneity in which algorithms best describe observed outcomes.
It may seem paradoxical that although the egalitarian algorithms best matched the individual outcomes of the observed fissions (see ‘How well did each algorithm predict observed individual-level outcomes?’), the baboons were relatively inefficient compared to these algorithms, more closely matching the efficiency of the despotic algorithm (see ‘How efficient were the observed baboon fissions?’). This indicates the despotism algorithm disturbed the baboon networks the observed amount, but in the wrong way: it broke the observed percentage and weights of bonds, but not the bonds that the baboons actually broke. Since the question of which bonds are broken or maintained is more indicative of process than network-level metrics, our results point tosuggest the egalitarian algorithms as the ones that most closely resemble the process of observed fissions. This apparent paradox highlights that understanding the processes by which animals make complex collective decisions remains challenging. As noted above, weWe either lack the full information available to the baboons, or the baboons are constrained and error-prone in their collective decision processes, perhaps because different individuals use different decision processes, creating a mix of processes being used simultaneously. Overall, this points outdemonstrates the need for more refined empirical data on what animals are doingindividual behavior in real time. 
Network topology may have played a role in determining which algorithm best matched observed outcomes. Not only were all algorithms able to simulate a fission with high efficiency on the Lodge group network (see above), they also all (except random) performed well at accurately predicting which bonds were broken versus maintained in the observed fission of Lodge group (Figure 5). This shows, the observed fission on the simpler, more linear Lodge group network was relatively efficient; thus, all non-random decision processes accurately assigned a large percentage of bonds as broken or maintained in the fission of this relatively linear network.
Hook’s group fission presents a striking departure from the general rule that egalitarian algorithms best predicted individual-level outcomes. Each of the nonrandom algorithms did worse at predicting individual-level outcomes for this group than the random algorithm (Figure 5). Observations suggest that this fission occurred as a result of a single male (the group’s most connected individual pre-fission) repeatedly leading off a particular subset of females, eventually leading to a fission (unpublished data). This was an unusual fission process in our dataset34,61process34,62, and it suggests that perhaps Hook’s fission did not follow any of the collective decision strategies outlined here. This exemplifies how individuals with non-typical behavior can have a powerful influence over collective decisions.

Conclusions

Our study unifies network-theoretic approaches with collective decision theory to analyze permanent social group fissions. The collective decision framework has previously only been used to analyze (democratic25) movement patterns in baboons. Our simulations show that collective decision processes wherein each individual has some influence over the outcome (democracy and community algorithms) better maintain complex social networks during a group fission than despotic decision processes. In addition, our democracy and community algorithms most accurately predicted which bonds were maintained in the actual fissions, in spite of the fact that the baboons failed to achieve the efficiency of these algorithms. Using data from multiple baboon group fissions in the wild, we show that animals with complex social bond structure appear to consider their social network during a fission and support the idea that baboon fissions proceed consistent with egalitarian decision making. 
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Table 1. Seven measures assessing our fission algorithms: ‘efficiency’ measures test how well algorithms minimize disturbance to the social networks; the individual outcome measure tests whether the algorithm correctly predicts which bonds are broken; for each measure, the best performing algorithm* is bolded in the last column. 
	Efficiency measures

	Measure
	Efficiency defined as
	Figure
	Mean for each strategy/algorithm 

	Percentage of bonds broken


	A low percentage of bonds broken is considered an efficient fission
	3
	Observed: 41
Democracy: 23
Community: 16
Despotism: 38
Random: 50
Efficient non-behavioral: 23

	Average weight of broken bonds
	A low average weight of broken bonds is considered an efficient fission
	4
	Observed: 0.18
Democracy: 0.15
Community: 0.12
Despotism: 0.17
Random: 0.19
Efficient non-behavioral: 0.13


	Sparsity of the fission
	A fission with low sparsity is considered an efficient fission
	S7
	Observed: 0.60
Democracy: 0.31
Community: 0.21
Despotism: 0.47
Random: 0.60
Efficient non-behavioral: 0.17

	Average weight of maintained bonds


	A high average weight of maintained bonds is considered an efficient fission

	S8
	Observed: 0.21
Democracy: 0.21
Community: 0.21
Despotism: 0.21
Random: 0.19
Efficient non-behavioral: 0.22

	Average betweenness centrality of broken bonds

	A high value of average betweenness centrality of broken bonds is considered an efficient fission
	S9
	Observed: 0.71
Democracy: 0.75
Community: 0.85
Despotism: 0.60
Random: 0.55
Efficient non-behavioral: 0.75

	Average betweenness centrality of maintained bonds

	A low value of average betweenness centrality of maintained bonds is considered an efficient fission
	S10
	Observed: 0.48
Democracy: 0.52
Community: 0.51
Despotism: 0.53
Random: 0.54
Efficient non-behavioral: 0.51

	Individual outcomes

	Correct assignments
	N/A
	5
	Observed: N/A
Democracy: 0.58
Community: 0.59
Despotism: 0.54
Random: 0.5
Efficient non-behavioral: 0.6


*For efficiency measures, the algorithms that minimized disturbance to the networks. For individual outcomes, the algorithms that best matched the observed bonds broken and maintained (omitting the non-mechanistic ‘benchmark’ algorithms, efficient non-behavioral network bisection and random).

[image: ]
Figure 1. Observed, pre-fission social networks of baboon groups analyzed in this study. Networks were parameterized using grooming data from two years prior to the observed fissions. Clearly, determining how to splitsplitting the social network in two while retaining social bonds is a complex undertaking.
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Figure 2. Visualization of the five hypotheticalfission algorithms for fission strategies, on simplified, example networks. Each column represents one of othe algorithmsalgorithm; the three rows represent the original network, the assignment processes for each algorithm, and examples of the outcome networksoutcomes, respectively. DG = daughter group.
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Figure 3.  Percentage of bonds broken by the fission algorithms and during the observed fissions of the different baboon social groups. (a) The y-axis is scaled such that for each group a value of 0 represents the percentage of bonds broken by the efficient non-behavioral algorithm and a value of 1 represents the mean percentage of bonds broken by the random algorithm (see dotted black lines). Boxes are clustered by algorithm; each color represents one of the seven different pre-fission baboon social groups. For a given social network, values below 0 denote breaking fewer bonds than the efficient non-behavioral algorithm and values above 1 denote breaking more bonds than random. The observed lines are the percentage of bonds that the observed fissions broke (see ‘How efficient were the observed baboon fissions’). In most of the actual fissions, the baboons broke more bonds than needed (observed lines fall above efficient non-behavioral) but fewer bonds than random (observed lines fall below random). Comparing other clusters of histograms to the dashed lines allows for an assessment of the efficiency of the fission algorithms (see ‘How efficient were each of the five fission algorithms’). The democracy and community algorithms break the lowest percentage of bonds, usually similar to the efficient non-behavioral network bisection. (b) The first three rows report η2 for the pairwise comparisons between the stochastic algorithms. In general, η2 of 0.01 is considered small, 0.07 medium, and 0.14 large57. The last two rows show the average percentile of the stochastic algorithms that the efficient non-behavior algorithm and observed fissions fall on. For example, the value of 95 for observed fissions means that the baboons broke more bonds than 95% of fissions from the democracy algorithm. More extreme values (those closer to 0 and 100) indicate a lower probability that the efficient non-behavioral (ENBNB) or observed value would be produced by that stochastic algorithm.


[image: ]
[image: ]

[bookmark: _Hlk65844971][bookmark: _Hlk65845062]Figure 4. Average weight of broken bonds produced by the fission algorithms and during the observed fissions of the baboon social groups. The y-axis is scaled such that for each group a value of 0 is the average weight of broken bonds from the efficient non-behavioral algorithm and a value of 1 is the average weight of broken bonds from the random algorithm (see dotted black lines). For a given social= network, values below 0 denote breaking weaker bonds on average than the efficient non-behavioral algorithm and values above 1 denote breaking stronger bonds than random. The observed lines are the average weight of bonds that the observed fissions broke (see ‘How efficient were the observed baboon fissions’). Once again, the baboons disturbed their network more than was necessary (observed lines are above efficient non-behavioral) but typically less than random (observed lines below random). The community algorithm broke the weakest bonds on average, followed by democracy, then despotism (see ‘How efficient were the five fission algorithms’). b) Quantitative comparison of algorithms; see Figure 3b caption for details.
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Figure 5. The democracy and/or community algorithm best predicted which bonds were broken or maintained in 6 of 7 of the observed fissions (all except for Hook’s). (a) Y-axis shows the percentage of bonds accurately assigned as broken versus maintained by each algorithm. Box plots are clustered by social group. (b) Quantitative comparison of algorithms; see Figure 3b caption for details.
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