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Abstract

Objectives: Pregnancy failure represents a major fitness cost for any mammal, partic-

ularly those with slow life histories such as primates. Here, we quantified the risk of

fetal loss in wild hybrid baboons, including genetic, ecological, and demographic

sources of variance. We were particularly interested in testing the hypothesis that

hybridization increases fetal loss rates. Such an effect would help explain how

baboons may maintain genetic and phenotypic integrity despite interspecific

gene flow.

Materials and Methods: We analyzed outcomes for 1020 pregnancies observed over

46 years in a natural yellow baboon-anubis baboon hybrid zone. Fetal losses and live

births were scored based on records of female reproductive state and the appearance

of live neonates. We modeled the probability of fetal loss as a function of a female's

genetic ancestry (the proportion of her genome estimated to be descended from anu-

bis [vs. yellow] ancestors), age, number of previous fetal losses, dominance rank,

group size, climate, and habitat quality using binomial mixed effects models.

Results: Female genetic ancestry did not predict fetal loss. Instead, the risk of fetal

loss is elevated for very young and very old females. Fetal loss is most robustly pre-

dicted by ecological factors, including poor habitat quality prior to a home range shift

and extreme heat during pregnancy.

Discussion: Our results suggest that gene flow between yellow and anubis baboons

is not impeded by an increased risk of fetal loss for hybrid females. Instead, ecological

conditions and female age are key determinants of this component of female repro-

ductive success.
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1 | INTRODUCTION

Hybridization (i.e., interbreeding between distinct genetic lineages) is

a common feature of primate evolution. Historic or ongoing hybridiza-

tion has been documented in all primate families, including in the

genus Homo (reviewed in Arnold & Meyer, 2006; Dannemann &

Racimo, 2018; Tung & Barreiro, 2017; Zinner et al., 2011). In many

cases, however, hybridizing taxa remain phenotypically and genetically

distinct, despite the expectation that hybridization should have a

homogenizing effect and ultimately lead to the erosion of species dif-

ferences. These observations strongly suggest that hybridization

incurs fitness costs, but the nature of these costs is largely unknown

in natural non-human primate hybrid zones (in contrast to well-docu-

mented cases in several non-primate hybrids: e.g., Ålund et al., 2013;

Neubauer et al., 2014; Powell et al., 2020; Svedin et al., 2008; Turner

et al., 2012; Walsh et al., 2016). Thus, the mechanisms that limit gene

flow between primate lineages remain a major unresolved puzzle in

the study of primate biodiversity and evolution.

Costs to fertility are a likely candidate, given the apparent viability

of many natural primate hybrids and the potential subtlety of effects

on fecundability or miscarriage rates. Indeed, in captivity, crosses

among lemur, tamarin, and macaque species produce hybrid offspring

with compromised fertility (Bernstein & Gordon, 1980; Rumpler &

Dutrillaux, 1980; Soto-Calder�on et al., 2018; Tattersall, 1993). A few

studies of naturally occurring admixture also provide preliminary sup-

port for fertility-related isolating barriers. For example, in a hybrid

zone in Mexico between two distantly related howler monkey species,

crosses between mantled howler females (Alouatta palliata) and black

howler males (A. pigra) do not appear to produce fertile offspring

(Cortés-Ortiz et al., 2007). In more recently diverged chacma baboons

(Papio ursinus) and Kinda baboons (P. kindae) in Zambia, the rarity of

offspring from crosses between small female Kindas and large male

chacmas may be a result of gestational and obstetric challenges that

limit gene flow, at least in one direction (Jolly et al., 2011). Finally, in

the human lineage, reduced fertility has been hypothesized to have

limited admixture between the ancestors of modern humans and

Neanderthals and Denisovans (Jégou et al., 2017; Sankararaman

et al., 2014; Sankararaman et al., 2016). However, in all three of these

cases, evidence for compromised fertility in hybrids is indirect because

no phenotypic data on fertility-related traits is available.

Baboons, members of the genus Papio, are well-suited for asses-

sing fertility-related costs to hybrids as they are intensively studied in

the wild, have external indicators of reproductive state that facilitate

data collection on mating and pregnancy outcomes, and frequently

hybridize in nature (Altmann, 1973; Fischer et al., 2019). Originating

in southern Africa, baboons subsequently expanded across the conti-

nent 1–2 million years ago to form two distinct lineages: the northern

clade, including the anubis (or olive) baboon (P. anubis), the hamadryas

baboon (P. hamadryas), and the Guinea baboon (P. papio); and the

southern clade, including the chacma baboon (P. ursinus), the Kinda

baboon (P. kindae), and the yellow baboon (P. cynocephalus) (Rogers

et al., 2019). Today, these species occupy largely non-overlapping

geographic ranges across Africa and the Arabian peninsula and are

distinguishable based on morphological and behavioral features

(Fischer et al., 2019). However, although current scientific consensus

recognizes them as distinct species (Fischer et al., 2019; Rogers

et al., 2019), they interbreed to produce hybrids at the boundaries

between their current geographic ranges (Charpentier et al., 2012;

Jolly et al., 2011; Phillips-Conroy & Jolly, 1986). This process of inter-

specific exchange appears to be part of a long, complex history of

independent evolution interspersed with repeated episodes of gene

flow among baboon species (Rogers et al., 2019; Vilgalys et al., 2022;

Wall et al., 2016; Zinner et al., 2009).

What keeps baboon species distinct? Studies of natural hybrid

zones—between anubis and hamadryas baboons in Ethiopia, chacma

and Kinda baboons in Zambia, and yellow and anubis baboons in

Kenya—have not yet produced clear answers. In Ethiopia, anubis

baboons hybridize with hamadryas baboons despite major differences

in their social and mating structures: multilevel societies featuring

one-male, multifemale units and female dispersal in hamadryas

baboons, versus polygynandrous, multimale, multifemale social groups

with male dispersal in anubis baboons (Bergman & Beehner, 2004;

Kummer, 1968; Kummer et al., 1970). Some reports suggest that

hybrids fare well near the center of the hybrid zone, where social

groups are highly admixed (Beehner & Bergman, 2006; Bergman

et al., 2008; Bergman & Beehner, 2003; Phillips-Conroy et al., 1991).

However, species differences in behavior may also impose costs on

anubis-hamadryas hybrids, potentially explaining the narrowness of

this hybrid zone (Nagel, 1973; Nystrom, 1992). Meanwhile, in the

Zambian hybrid zone between Kinda baboons and chacma baboons,

asymmetric hybridization also suggests potential costs of hybridiza-

tion (Jolly et al., 2011). Both hmorphological and behavioral mecha-

nisms have been hypothesized, but their roles in mediating

reproductive isolation-associated costs have not been quantified.

In the well-characterized baboon hybrid zone between yellow

baboons and anubis baboons in East Africa, hybrids are viable and

reproduce readily with both parent species and with other hybrids,

even though their parent species are as distantly related as possible

among extant baboons (�1.4 million years diverged vs. �750 thou-

sand years for anubis-hamadryas and � 600 thousand years for

chacma-Kinda) (Rogers et al., 2019). Yellow and anubis baboons have

similar social systems and are similar in size, so neither fundamental

differences in mating behavior nor gestational and obstetric consider-

ations likely pose a barrier to hybridization (Fischer et al., 2019;

Rogers et al., 2019). Indeed, yellow-anubis hybrids may sometimes

experience phenotypic advantages. In the Amboseli region of Kenya,

near the center of the hybrid zone, greater anubis ancestry in this

majority yellow ancestry population is associated with accelerated

maturation and an increased rate of opposite-sex affiliation, an impor-

tant predictor of lifespan in this population (Archie et al., 2014;

Campos et al., 2020; Charpentier et al., 2008; Fogel et al., 2021). In

males, more anubis ancestry also predicts earlier natal dispersal and

increased mating success (Charpentier et al., 2008; Tung et al., 2012).

Nevertheless, the hybrid zone is narrow relative to the large geo-

graphic ranges of the two parent species (Charpentier et al., 2012)

and genomic analyses reveal selection against admixture in Amboseli

FOGEL ET AL. 619

 26927691, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ajpa.24686 by C

ornell U
niversity, W

iley O
nline L

ibrary on [17/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(Vilgalys et al., 2022). Together with evidence that gene flow between

yellow baboons and anubis baboons is a repeated occurrence in

baboon evolutionary history (Rogers et al., 2019; Vilgalys et al., 2022;

Wall et al., 2016), these observations suggest that fitness costs to

admixture must exist, but are likely subtle and/or temporally or spa-

tially variable.

Here, we investigated whether fertility-related costs, measured in

terms of fetal loss (miscarriage or stillbirth), act as a mechanism to

restrict interspecific gene flow in the Amboseli baboon hybrid zone.

To do so, we combined the most comprehensive data set yet com-

piled for cases of fetal loss in wild non-human primates (n = 1020

pregnancies in 175 baboon females) with recent estimates of genetic

ancestry derived from whole-genome resequencing data (Vilgalys

et al., 2022). We tested whether higher levels of introgressed (anubis)

ancestry, intermediate ancestry, or recent (relative to historic) hybrid-

ity predicted negative pregnancy outcomes, consistent with fetal loss-

related barriers to admixture. We also placed these genetic ancestry

effects in the context of other variables known or suspected to con-

tribute to fetal loss in primates, including age, dominance rank, group

size, ecological conditions (e.g., rainfall, temperature, and overall habi-

tat quality), and individual history of miscarriage (e.g., Bailey

et al., 2021; Beehner, Onderdonk, et al., 2006; Dezeure et al., 2022;

Kolte et al., 2021; Nybo Andersen et al., 2000; Packer et al., 1995;

Robbins et al., 2006; Roof et al., 2005; Schlabritz-Loutsevitch

et al., 2008; Wasser, 1995).

2 | MATERIALS AND METHODS

2.1 | Study site and subjects

The Amboseli basin of southern Kenya is a semi-arid, savanna envi-

ronment situated within a dry Pleistocene lakebed near the northern

base of Mt. Kilimanjaro. Animals in this ecosystem contend with “a
place of extremes” (Alberts, 2019). Temperatures vary from extreme

midday heat, which can reach 45�C during the hottest months of the

year, to nighttime lows of 5�C during the coldest months. Rainfall is

generally absent during the predictable long dry season from June to

October and is extremely variable and unpredictable during the long

wet season from November to May. On average, total annual rainfall

equals approximately 350 mm, but rainfall is also highly variable

across years (Alberts, 2019).

Subjects in this study were pregnant females from multiple social

groups of wild baboons living in the Amboseli ecosystem. This baboon

population has been intensively studied for over five decades, reveal-

ing both substantial variation in pregnancy outcomes and a complex

history of admixture (Alberts & Altmann, 2001; Alberts &

Altmann, 2012; Beehner, Onderdonk, et al., 2006; Samuels &

Altmann, 1986; Tung et al., 2008; Vilgalys et al., 2022; Wall

et al., 2016). All animals in this majority yellow baboon population are

multigenerational hybrids: some individuals harbor anubis ancestry

from hybridization events that predate long-term observations (here-

after, historic hybrids), while others are products of both historic gene

flow and a recent wave of admixture dating from the 1980s (hereaf-

ter, recent hybrids) (Samuels & Altmann, 1986; Tung et al., 2008;

Vilgalys et al., 2022; Wall et al., 2016). The Amboseli hybrid popula-

tion is located close to the center of a narrow yellow-anubis hybrid

zone in southern Kenya that minimally extends into central Kenya and

likely occurs wherever anubis and yellow baboon ranges meet

(Charpentier et al., 2012; Maples & McKern, 1967). Males who immi-

grate into the study population tend to be more anubis-like than the

study population as a whole, partly explaining an increase in anubis

ancestry in Amboseli over the past four decades (Vilgalys et al., 2022).

However, some immigrant males are more yellow-like than the study

population as a whole, indicating that male immigration from both

parental taxa contributes to admixture in this population (Vilgalys

et al., 2022).

Members of the study population are individually recognizable

and followed on a near-daily basis. During these follows, data are col-

lected on individual-level behavior and reproductive status as well as

group demography (Alberts et al., 2020). Study subjects for this analy-

sis were pregnant females followed between November 1976 and

December 2021 as members of 23 different social groups, represent-

ing two original study groups and their subsequent fission and fusion

products. A minority of these groups (3 out of 23) were semi-

provisioned because of their close proximity to a tourist lodge. While

these three groups differ demographically and behaviorally from wild-

feeding groups (e.g., they exhibit reduced male dispersal, higher rates

of inbreeding, and shorter interbirth intervals: Altmann &

Alberts, 2003; Galezo et al., 2022), our model results were similar

whether we included or excluded them. Therefore, we included preg-

nancies from all social groups in our main analysis and we report

results that exclude subjects in food-supplemented groups in the Sup-

plementary Information (Table S1).

We restricted the data set to females for whom genetic ancestry

estimates from whole-genome resequencing data were available

(Vilgalys et al., 2022) and whose birthdates were known within

±6 months' error. We also excluded one female who was a known

reproductive outlier in the study population (i.e., she experienced con-

tinuous cycling and failed to conceive over many years). The resulting

sample contained 175 unique females, who together were observed

during 1020 pregnancies (see below).

The research in this study was approved by the Institutional Ani-

mal Care and Use Committee (IACUC) at Duke University

(#A273-17-12). In Kenya, our research was approved by the Wildlife

Research Training Institute (WRTI), the Kenya Wildlife Service (KWS),

the National Environment Management Authority (NEMA), and the

National Council for Science, Technology, and Innovation (NACOSTI).

2.2 | Fetal losses

To track pregnancy outcomes, we relied on an established method

regularly used during long-term monitoring of this population (Alberts

et al., 2020; Altmann, 1973; Beehner, Nguyen, et al., 2006). Briefly,

pregnancy is detectable when a female (i) ceases sexual cycling

620 FOGEL ET AL.
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(i.e., ceases to exhibit sex skin swellings and does not menstruate) and

(ii) her paracallosal skin gradually changes from black to pinkish red

(the “pregnancy sign” in baboons: Altmann, 1973). A conception date

is then estimated a posteriori as the first day of deturgescence of her

sexual swelling during the cycle in which conception occurred (i.e., the

conceptive cycle). Analyses of steroid hormone profiles from repro-

ductive females in our study population confirm that this visual

assessment method identifies 97% of endocrinologically-identified

pregnancies (Beehner, Nguyen, et al., 2006). However, we are likely to

miss pregnancies that terminate early in gestation (e.g., in the first tri-

mester, especially early in the first trimester).

A pregnancy ends with either a live birth—when a previously

pregnant female is seen with a new infant—or a fetal loss. Fetal losses

are recorded when a female who has been scored as pregnant on the

basis of the above criteria resumes cycling without producing a live

infant, and also shows signs of fetal loss that may include vaginal

bleeding, production of a dead fetus, and/or hormonal signatures of

fetal loss (see Beehner, Nguyen, et al. (2006) for a detailed description

and validation of these methods).

We excluded pregnancies that ended due to the pregnant

female's death. We included all pregnancies that overlapped periods

when social groups were fissioning or fusing, as well as all pregnancies

that occurred during several periods of reduced data collection. We

also included pregnancies that occurred during the 2009 hydrological

year (November 1st, 2008 to October 31st, 2009), which included the

most severe drought ever recorded in the Amboseli ecosystem and

led to reduced conception rates (Carabine et al., 2014; Lea

et al., 2015; Okello et al., 2016; Tuqa et al., 2014). Models that

excluded these time periods produced similar results, however, as

reported in Table S1.

2.3 | Genetic ancestry

Genome-wide estimates of admixture—here, the estimated proportion

of a study subject's genome derived from anubis ancestry—were

included for all females. These estimates can range from 0 (unadmixed

yellow) to 1 (unadmixed anubis) and were based on low coverage

whole-genome resequencing data generated in a previous study

(median = 1.08� coverage, mean = 2.00� coverage) (Vilgalys

et al., 2022). To estimate genome-wide ancestry, we first assigned

local ancestry states to sequenced sites across the genome: each site

was assigned a state of homozygous yellow, homozygous anubis, or

heterozygous. To do so, we used a composite likelihood method suit-

able for low coverage data (LCLAE: Wall et al., 2016) and parental spe-

cies allele frequencies for putatively unadmixed yellow and anubis

baboons (Robinson et al., 2019; see Vilgalys et al., 2022). We then

averaged local ancestry states across the autosomes for each female

to produce a global, genome-wide estimate of ancestry. Females in

this study varied in their genome-wide ancestry estimates from 0.23

to 0.60 (mean ± SD: 0.36 ± 0.08; Figure 1).

To assess genetic ancestry effects on fetal loss, we included both

linear and quadratic effects of genome-wide ancestry in our model.

The linear effect tests the hypothesis that females with more anubis

ancestry in this majority yellow population have an increased likeli-

hood of fetal loss. The quadratic effect tests the hypothesis that inter-

mediate hybrids are more likely to experience fetal loss than animals

near the extremes of yellow-like and anubis-like ancestry observed in

Amboseli, as might be expected if F1-like animals incur the greatest

costs of admixture. We also reasoned that admixture-related costs

might not be detectable in historically admixed animals if selection

has had sufficient time to remove deleterious variants. Therefore, we

ran an alternative model in which we replaced the continuous esti-

mates of ancestry with a binary variable corresponding to whether a

female was a recent (n = 89) or historic (n = 75) hybrid (see Vilgalys

et al., 2022). Because we could not assign historic versus recent

hybrid status for 11 females in our sample, this model was fit to a

reduced data set (164 females, 944 pregnancies, 136 fetal losses).

2.4 | Ecological effects

Even in non-seasonal breeders like baboons, ecological conditions can

still influence female reproductive timing and pregnancy outcomes

(Altmann & Alberts, 2003; Beehner, Onderdonk, et al., 2006;

Bercovitch & Harding, 1993; Gesquiere et al., 2018; Hill et al., 2000;

Lea et al., 2015; Lycett et al., 1999). We therefore evaluated the

effects of three key aspects of baboon ecology on the probability of

fetal loss: temperature, rainfall, and habitat quality.

2.4.1 | Temperature

Heat stress, when the environment drives core body temperature

above its optimum, can have deleterious effects on sperm production,

oocyte maturation, and fetal and placental growth (reviewed in

Boni, 2019; Hansen, 2009; Walsh et al., 2019). To assess the potential

effects of heat stress on fetal loss, we followed Beehner, Onderdonk,

et al. (2006) by assessing the effects of temperature in two time

periods: the 2 months prior to conception and the 2 months prior to

the live birth or fetal loss. Temperature (�C) was measured daily using

a min-max thermometer. We calculated the average daily maximum

temperature for both time periods, which were weakly negatively cor-

related, indicating that females who conceived during the cooler

months of the year tended to experience pregnancy outcomes in the

warmer months of the year and vice versa (Pearson's r = �0.157,

p < 10�6; Table S2). This is expected given patterns of seasonality in

Amboseli and the 6-month gestation period of baboons. We included

temperature in both time periods as continuous predictors in our

models (note that this choice differs from Beehner, Onderdonk, et al.

(2006), who used a binary variable to differentiate “normal” periods

from those with extreme heat).

For daily maximum temperature data collected from June 1992 to

1997, the thermometer was located close to the research camp's

kitchen, producing systematically high temperature measurements.

Before and after that time period, the thermometer was placed in

FOGEL ET AL. 621
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several other locations in the research camp that were far from any

building structure. To correct the data from June 1992 to 1997, we

subtracted 4.2�C from all maximum daily temperature values recorded

during this time period. This adjustment factor was calculated based

on modeling daily maximum temperature as a function of the day of

the year and a random effect of thermometer (instrument used from

1992–1997 vs. the four other thermometers). Importantly, a model

excluding pregnancy records from this time period produced qualita-

tively unchanged results.

2.4.2 | Rainfall

In the semi-arid Amboseli ecosystem, rainfall mediates female fertility

by affecting food availability and thus female nutritional condition.

Following Beehner, Onderdonk, et al. (2006), we evaluated the effects

of rainfall conditions in the 5 months prior to conception as well as

the 5 months prior to the pregnancy outcome (either live birth or fetal

loss). Daily rainfall (millimeters) was measured every morning using a

rain gauge. For both the 5 months preceding conception and the end

of the pregnancy, we calculated the mean daily rainfall across each

time period. These two predictors were moderately negatively corre-

lated in our data set, again consistent with seasonal rainfall patterns in

Amboseli (Pearson's r = �0.385, p < 10�36; Table S2). We modeled

rainfall in both time periods as continuous predictors (in contrast to

the binary variable distinguishing unusually dry periods—that is,

droughts—from non-drought periods in Beehner, Onderdonk,

et al. (2006)).

2.4.3 | Habitat quality

In the central part of the Amboseli basin, the mid-1960s to the mid-

1980s saw a precipitous decline in Acacia woodlands (Altmann

et al., 1985; Western & Van Praet, 1973). Because baboons in Ambo-

seli rely on Acacia trees as an important food source and for sleeping

sites, this change led to substantially degraded habitat quality for

them (Altmann et al., 1985). Subsequently, in the late 1980s and early
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F IGURE 1 Live birth and fetal loss patterns in
Amboseli baboon females. Each horizontal line
represents the observed lifespan of a single female.
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1990s, the two study groups then monitored by the Amboseli Baboon

Research Project shifted their home ranges �5–6 km from the central

part of the basin to its south-western perimeter, where food was

more readily available (Altmann & Alberts, 2003; Bronikowski &

Altmann, 1996). After the home range shift, the baboons spent more

time resting and socializing and less time foraging, and females experi-

enced earlier maturation, increased offspring survival, and shorter

interbirth intervals (Alberts et al., 2005; Altmann & Alberts, 2003;

Bronikowski & Altmann, 1996; Gesquiere et al., 2018). We therefore

modeled habitat quality as a binary variable in our model, indicating

whether a pregnancy was conceived pre- or post-home range shift

(i.e., in low or high habitat quality, respectively).

2.5 | Other potential sources of variance in fetal
loss rates

2.5.1 | Age

Female age is a known predictor of fertility in a diverse set of species

(e.g., Campos et al., 2022; Ericsson et al., 2001; Froy et al., 2013;

Gruhn et al., 2019; Hayward et al., 2013; Jones et al., 2014; Nussey

et al., 2009; Reid et al., 2003). In the Amboseli baboons, conception

probabilities peak in mid-adulthood, and younger and older females

experience the longest periods of cycling before conceiving and the

shortest pregnancy lengths (Beehner, Onderdonk, et al., 2006;

Campos et al., 2022; Gesquiere et al., 2018). We therefore included

linear and quadratic effects of female age at conception in our model

(following Beehner, Onderdonk, et al., 2006; Campos et al., 2022;

Gesquiere et al., 2018). Because female age was highly correlated with

parity (primiparous vs. multiparous) (Pearson's r = 0.515, p < 10�69),

we included female age but not parity in the model (we note, how-

ever, that we identified no effect of primiparity/multiparity in a post

hoc analysis: β = �0.203, p = 0.559). For 92% (161 out of 175) of the

females in the data set, birthdates were known to within a few days'

error. For the remaining female subjects, 12 females had birthdates

that were estimated to within ±3 months' error and 2 females had

birthdates that were estimated to within ±6 months' error (see

Table S1 for results of a model excluding females with birthdates esti-

mated with greater than a few days' error, which were similar to the

main analysis). Female age in our data set ranged from 3.2 to

23.4 years of age, with a mean female age of 10.4 years.

2.5.2 | Social status

In social animals, dominance rank can dictate a female's access to a

variety of crucial resources including food, mates, and social partners,

which may then affect her reproductive success (e.g., Holekamp

et al., 1996; Pusey et al., 1997; Setchell et al., 2002; von Holst

et al., 2002; Wasser et al., 2004; Wright et al., 2020; reviewed in

Stockley & Bro-Jørgensen, 2011). We therefore modeled a female's

rank at the time of conception as a fixed effect in the model. Ordinal

ranks were assigned on a monthly basis using observed wins and

losses in agonistic interactions between all pairs of adult females living

in the same social group in a given month: the top-ranking female in

the hierarchy in each month was assigned rank 1 and lower-ranking

individuals were assigned successively higher numbers (i.e., ranks 2, 3,

4 … x, where x is the total number of adult females in the social group)

(Alberts et al., 2020; Alberts & Gordon, 2018).

The ordinal ranking approach assumes that rank-based competi-

tion for resources is density-dependent, such that the resources over

which females compete do not scale with changes in group size (Levy

et al., 2020). However, females may also compete for density-

independent resources, which is better captured by proportional rank

(Levy et al., 2020). Therefore, we also assessed the robustness of our

models to substituting proportional rank for ordinal rank. Proportional

rank was calculated using ordinal rank values and hierarchy size, such

that values range from 0 to 1 and represent the proportion of females

in the hierarchy that a given female outranks (e.g., the highest-ranking

female is assigned a value of 1 because she outranks 100% of other

individuals in the hierarchy). Using ordinal or proportional ranks as the

rank-related predictor in our model did not qualitatively change our

results so we report results using ordinal rank in the main text (see

Table S3 for results using proportional rank).

2.5.3 | Group size

To measure group size, which indexes experienced density and

resource competition, we included the number of adult females in the

social group at the time of conception as a continuous predictor in

our model. We used the number of adult female group members

instead of the total number of group members because the number of

adult females in the social group is the stronger predictor of female

fertility traits, such as interbirth intervals, in the Amboseli baboons

(Altmann & Alberts, 2003).

2.5.4 | Previous fetal losses

The number of previous fetal losses is one of the two strongest pre-

dictors of miscarriage rates in humans (in addition to maternal age)

(Brosens et al., 2022). We therefore included the number of previous

fetal losses as a fixed effect predictor when modeling pregnancy out-

come. Primiparous mothers were assigned a value of 0 (no previous

fetal losses).

2.6 | Statistical analysis

We analyzed the probability of fetal loss using a mixed effects logistic

regression approach. Each row of data corresponded to a unique

pregnancy and was assigned a value of 1 if the pregnancy resulted in

a fetal loss and a 0 if the pregnancy resulted in a live birth. We fit the

model using the R package glmmTMB (Brooks et al., 2017):
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yij �Bin 1, pij
� �

,

pij ¼ logit β0þXijβþ fiþ εij
� �

,

where yij is 0 or 1, corresponding to whether female i experienced a

live birth (0) or fetal loss (1) during pregnancy j. yij is drawn from a

binomial distribution, where the probability of fetal loss (pij) is mod-

eled as the function of the logit-transformed sum of (i) the intercept,

β0; (ii) the fixed effects (Xijβ) of female genome-wide ancestry (or

recent vs. historic hybrid status), female genome-wide ancestry

squared, female age at conception, female age at conception squared,

number of previous fetal losses, female ordinal dominance rank, group

size, average daily maximum temperature 2months prior to concep-

tion, average daily maximum temperature 2months prior to live birth/

fetal loss, average daily rainfall 5months prior to conception, average

daily rainfall 5months prior to live birth/fetal loss, and habitat quality

(Xij represents all of these data using standard matrix notation and β
refers to the vector of all fixed effect estimates); and (iii) the random

effect of female identity, fi. εij represents model error. All analyses

were run and figures were made in R (v.3.6.1; R Core Team, 2019).

3 | RESULTS

3.1 | Fetal loss rates in the Amboseli baboon
population

The resulting data set consisted of 1020 pregnancies (minimum num-

ber of pregnancies per female = 1, maximum = 18, mean = 6). For

98% of pregnancies, the dates of conception (1002 out of 1020) and

end of the pregnancy (1005 out of 1020) were known to within a few

days' error. Inclusion or exclusion of pregnancies with less certain con-

ception or pregnancy end dates did not qualitatively change our

model results (Table S1). Of the 1020 pregnancies in our data set,

143 (14%) resulted in fetal loss (see Beehner, Onderdonk, et al. (2006)

for similar results in a smaller, earlier dataset for this population). Thus,

the rate of fetal losses in our population has been relatively stable

over the course of our long-term study, and is similar to the rate

reported in human females following clinical recognition of pregnancy

(i.e., usually after 4–6 weeks gestational age) (Dimitriadis et al., 2020;

Pinar et al., 2018). It is slightly higher than miscarriage estimates for

anubis baboons from Gombe National Park, Tanzania (9.6%–10.7%:

Bailey et al., 2021; Packer et al., 1995) and for yellow baboons from

Mikumi National Park, Tanzania (10%: Wasser, 1995), although differ-

ences in population ecology and inclusion criteria for fetal losses

(e.g., we include stillbirths but Bailey et al. (2021) exclude them) make

direct comparisons difficult.

Exactly half of the females in our sample never experienced a

fetal loss, and both the number of fetal losses and number of live

births per female tracked their total number of pregnancies (linear

model estimate for live births: β = 0.824, p < 10�89, Figure S1A; linear

model estimate for fetal losses: β = 0.176, p < 10�14, Figure S1B).

Fetal losses were recorded during all three trimesters, although almost

half were documented during the third trimester (Figure 2). Very few

fetal losses were related to the immigration of feticidal males, an

important source of social stress for pregnant females (n = 4–8 of the

113 fetal losses in our data set overlapped the data set of Zipple et al.

(2017); minimum value corresponds to high confidence feticides and

maximum value includes additional possible feticides), so we included

these cases in our main data set. A model excluding feticides is consis-

tent with the results from the main model (Table S4).

3.2 | Genetic ancestry and hybrid status are not
associated with fetal loss

The results of our main model indicate that a female's genome-wide

ancestry did not predict her likelihood of fetal loss (linear effect:

β = �8.492, p = 0.506; quadratic effect: β = 11.454, p = 0.471;

Table 1, Figure 1, Figure 3a). Substituting a binary variable corre-

sponding to a female's hybrid status (i.e., recent or historic) in place of

the linear and quadratic genetic ancestry predictors also did not reveal

any effect of admixture on pregnancy outcome (β = 0.201, p = 0.408;

Table S5). Both models produced qualitatively similar results and while

first trimester second trimester third trimester

0
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0 50 100 150 200

length of pregnancy that ended in fetal loss (days)
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t o
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ss
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F IGURE 2 Records of fetal loss by trimester in the data set
(n = 143). Approximately half of observed fetal losses (67 out of 143)
occurred in the third trimester. Mean gestation length for live births in
Amboseli baboons is 178 days (Gesquiere et al., 2018), but stillbirths
sometimes occurred several weeks beyond this mean value; thus, the
third trimester losses in this dataset occurred from days 121–202
post-conception (where 202 is the maximum number of days at which
fetal loss was documented). Second and first trimester losses
represented 32.9% (47 out of 143) and 20.3% (29 out of 143) of fetal
losses, respectively. Data are binned in three-day increments and
include 3 cases where the dates of conception or end of the
pregnancy were known to greater than a few days' error.
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we focus on the main model below, we note when results differed

between models.

3.3 | Maternal age predicts fetal loss

Our main model identified female age as the only individual-level

characteristic that predicted fetal loss (Table 1, Figure 3a). Younger

and older pregnant females were more likely to experience fetal loss

than middle aged females (quadratic effect of age: β = 0.010,

p = 0.017; Table 1, Figure 3b). Based on model predictions, females at

the oldest age included in our data set (23.2 years) are the most likely

to suffer fetal loss (38.6% probability of fetal loss vs. 13.9% for

females at the youngest age; Figure 3b), while females at approxi-

mately the median age in the data set (9.73 vs. median 9.49 years) are

the least likely to suffer fetal loss (9.3%).

3.4 | Ecological factors, but not social status or
group size, contribute to variance in pregnancy
outcomes

Beyond age effects, which are common in humans and other animals,

the primary predictors we identified for fetal loss were related to heat

stress and overall habitat quality. Increasing mean maximum tempera-

tures prior to the end of pregnancy predicted an increased chance of

fetal loss (β = 0.195, p = 0.003, Table 1, Figure 3a,c; see Beehner,

Onderdonk, et al. (2006) for a similar result for first trimester losses).

Elevated mean maximum temperatures prior to conception may also

weakly contribute to the probability of fetal loss, although this effect

was not statistically significant (β = 0.099, p = 0.082, Table 1,

Figure 3a; see also Tables S1, S3, S4, and S5 for alternative model

specifications with similar results). Additionally, pregnancies when

females lived in low habitat quality were more likely to end in fetal

loss relative to those occurring in high habitat quality (β = 0.888,

p = 0.040; Table 1, Figure 3d), although this effect was not statisti-

cally significant under several alternative model specifications

(β = 0.857–1.039, p = 0.053–0.103, Tables S1, S4, and S5). In con-

trast, social rank, group size, and rainfall levels pre-conception and

before the end of pregnancy did not predict fetal loss rates in any ver-

sion of our models (all p > 0.20; Table 1, Figure 3a, Tables S1, S3, S4,

and S5).

4 | DISCUSSION

Together, our analysis combines long-term data on behavior, demog-

raphy, and ecology with the ability to track fetal loss to produce the

largest study of fetal loss rates in wild primates to date. We found no

support for the hypothesis that fetal loss acts to counter free gene

flow between yellow baboons and anubis baboons in Amboseli.

Instead, our findings show that a female's genetic ancestry in this

TABLE 1 Results from the main logistic regression model predicting fetal loss
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admixed population does not predict fetal loss, despite substantial

variation in pregnancy outcomes overall. Thus, this aspect of female

fertility is unlikely to play a substantial role in maintaining species

boundaries in baboons, unless the effects of maternal genetic ancestry

are concentrated during the first few weeks of gestation, when we

are unable to accurately detect pregnancy. In our data set, the earliest

fetal losses occurred at approximately 3 weeks gestational age, which

roughly equates to the first 5 weeks of pregnancy in humans. In

human women, losses during this time are thought to be associated

with spontaneous chromosomal abnormalities, primarily aneuploidies,

in the embryo (Larsen et al., 2013; Pinar et al., 2018; but see Brosens

et al., 2022). Hybridization can increase aneuploidy rates in some ani-

mal systems (Dion-Côté et al., 2015; Fujiwara et al., 1997; Hauffe

et al., 2012; Hu et al., 2013; Sakai et al., 2007). However,

hybridization-driven chromosomal abnormalities are not an obvious

expectation in baboons, where chromosome numbers are identical in

all extant taxa and synteny is thought to be very high (Stanyon

et al., 2008).

Our results indicate that the ability of hybrid females to carry a

pregnancy to term is unlikely to explain reproductive isolation
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F IGURE 3 Predictors of fetal loss in wild baboons. (a) Effect estimates for the intercept and fixed effects in the main logistic regression model
predicting fetal loss. Dots correspond to effect sizes and horizontal lines correspond to effect sizes ±1 standard error. Dashed horizontal lines
correspond to the intercept and genetic ancestry-related predictors (which were divided by 100 to place them on a similar scale as the other
predictors, to facilitate visualization) and maternal age2 (multiplied by 100 for scaling, for the same reason). Solid horizontal lines correspond to
unscaled effect sizes and standard errors. Asterisks denote predictor variables for which p < 0.05. (b) The probability of fetal loss as a function of
a female's age at conception. Black dots and vertical lines correspond to the predicted relationship (±1 standard error for each female age) based
on model estimates, assuming average values for all other covariates. Colored dots show fetal loss (y = 1; green) or live birth (y = 0; blue) for all
1020 pregnancies (dots are jittered vertically for visibility). (c) As in (b), with the probability of fetal loss as a function of temperature 2 months
prior to the end of pregnancy. (d) The proportion of all pregnancies that were fetal losses (colored green) or live births (colored blue) as a function
of habitat quality. Counts per pregnancy outcome for each type of habitat quality are shown as numbers within each bar.
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between baboon species. A caveat to our findings is that all animals in

our study population are hybrid: if the effect of ancestry on fetal loss

only appears in comparisons between unadmixed females and hybrids

of any degree, we would not observe it. Although we cannot rule out

this possibility, we view it as unlikely given that the range of ancestry

values in the Amboseli population has been sufficient to both detect

genetic ancestry effects on other life history and behavioral traits

(Charpentier et al., 2008; Fogel et al., 2021; Franz et al., 2015; Tung

et al., 2012) and to identify genetic evidence for selection against

introgression (Vilgalys et al., 2022). Additionally, other aspects of con-

ception or pregnancy may contribute to reproductive isolation. For

instance, we were unable to investigate effects of paternal ancestry in

this study because, in a multiply mating species like baboons, paternal

identity cannot be confirmed without genetic data, which are not

available for miscarried or stillborn fetuses. Thus, it remains possible

that genetic ancestry affects fetal loss as a function of the father's

ancestry. This possibility would be consistent with Haldane's rule,

which posits that when species interbreed, hybrids of the heteroga-

metic sex (e.g., fathers) are more likely to suffer fitness costs relative

to hybrids of the homogametic sex (e.g., mothers) (Haldane, 1922).

Notably, costs to hybrid male fertility need not be complete for Hal-

dane's Rule to be satisfied. Further, even if hybrid males suffered

fertility-related costs, hybrid females could mate with yellow-like

males to produce backcrossed offspring and perpetuate the hybrid

zone. Finally, the interaction between maternal and paternal genetic

ancestries could play a role if ancestry combinations at specific

regions of the genome negatively interact in the developing fetus

(i.e., Bateson-Dobzhansky-Muller incompatibilities, or BDMIs:

Bateson, 1909; Dobzhansky, 1936; Muller, 1942). The locations of

putative BDMIs can be inferred via genetic scans for local ancestry

combinations that are underrepresented in hybrid populations

(Payseur & Hoekstra, 2005; Pool, 2015; Schumer et al., 2014), sug-

gesting a potential path forward for testing this hypothesis in hybrid

populations where fetal loss and genetic ancestry data are available.

While we found no evidence for genetic ancestry effects, our

results do highlight several other sources of variance in pregnancy

outcomes in this population. Female age predicted fetal loss, such that

the youngest and oldest females experienced the highest rates of fetal

loss. In a previous analysis in this population, Beehner, Onderdonk,

et al., 2006 found no linear effect of age but did not examine a qua-

dratic effect of age, which may explain the difference between this

analysis and the earlier one. However, our results are similar to those

described in captive baboons (Schlabritz-Loutsevitch et al., 2008).

Indeed, even though captive baboons have much longer life expectan-

cies (Bronikowski et al., 2002), fetal loss rates increase exponentially

at �14–15 years of age in both Amboseli and in the breeding colony

at the Southwest National Primate Research Center (Schlabritz-

Loutsevitch et al., 2008), suggesting that the onset of reproductive

senescence in female baboons may be relatively insensitive to envi-

ronmental differences.

Ecological stressors also predicted fetal loss: females living in low

habitat quality and exposed to heat stress during pregnancy experi-

enced elevated fetal loss rates. Here again, our findings expand on the

work of Beehner, Onderdonk, et al. (2006), who also identified a pos-

sible effect of heat stress on fetal loss rates. However, this relation-

ship did not reach statistical significance (p = 0.07 in Beehner,

Onderdonk, et al. (2006)) and was detectable only in first trimester

pregnancies. Further, their results could have been affected by the

systematically elevated maximum daily temperature records during

5 years of the long-term study (1992–1997; see Methods). Our

results, which include a substantially larger sample size (n = 1020

pregnancies vs. 656 in Beehner, Onderdonk, et al. (2006)) and cor-

rected temperature data (see Methods), therefore confirm the impor-

tance of heat stress for pregnancy outcomes across gestation. Our

results also dovetail with evidence from a wide variety of animal taxa

on the relationship between heat stress and compromised fertility,

starting from germ cell generation through gestation (reviewed in

Boni, 2019; Hansen, 2009; Walsh et al., 2019).

In contrast to Beehner, Onderdonk, et al. (2006), who identified

an effect of severe drought on pregnancy outcomes, we did not iden-

tify an effect of rainfall on fetal losses versus live births. This differ-

ence between our results and theirs may be partly attributable to the

fact that we used a continuous rainfall measure, while they catego-

rized 5-month periods as “drought” versus normal periods. Further-

more, our finding that overall habitat quality (not included in Beehner,

Onderdonk, et al. (2006)) predicts fetal loss may capture a similar

mechanism: a degraded resource base with inadequate food to sup-

port successful female reproduction. Notably, exposure to heat stress

and drought conditions are expected to become more common in

many animal populations due to accelerating climate change (Fuller

et al., 2021; Walsh et al., 2019). Our results suggest that these

changes may not only compromise habitat quality, but also alter vital

rates for primate populations to decrease mean population fitness.

Our findings also reinforce the value of baboons as models for

human reproduction (Bauer, 2015; D'Hooghe et al., 2009;

Hendrickx & Peterson, 2009; Honoré & Tardif, 2009; Nathanielsz

et al., 2009). Specifically, in addition to sharing slow life histories, little

to no reproductive seasonality, and similarities in reproductive biology

(e.g., size and anatomy of the internal reproductive tract, morphology

of the placenta, incidence of gynecological diseases; reviewed in

VandeBerg et al., 2009), our study suggests that fetal loss in baboons

exhibits parallels to fetal loss in humans (Schlabritz-Loutsevitch

et al., 2008). The rate of fetal loss in Amboseli—approximately 1.4 out

of 10 pregnancies (Beehner, Onderdonk, et al. (2006) and this study)—

is similar to some estimates of miscarriage rates for clinically recog-

nized pregnancies in humans (e.g., �10%–20% after implantation:

Dimitriadis et al., 2020; Pinar et al., 2018). Moreover, abiotic environ-

mental stressors, including high temperatures during pregnancy, have

recently gained attention in potentially explaining adverse birth out-

comes in humans, such as fetal loss (e.g., Hajdu & Hajdu, 2021;

Kanner et al., 2020; Strand et al., 2012; Syed et al., 2022; but see

Asamoah et al., 2018). For example, in low-risk pregnant women in

Utah, extreme heat exposure (>90th temperature percentile)

increased the odds of stillbirth by �5-fold compared to exposure to

moderate temperatures (Kanner et al., 2020). Further, age-related mis-

carriage risk in human women is thought to also follow a “J-shaped
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curve,” with higher rates in very young women and increasing rates as

women age (Brosens et al., 2022). However, in humans, age-related

patterns of miscarriage also suffer from sociocultural biases that influ-

ence both pregnancy outcomes and the age of first pregnancy

(Cohen, 2014; Santelli et al., 2017). Our novel observation that a simi-

lar “J-shaped curve” occurs in wild baboons therefore provides pre-

liminary evidence that the pattern observed in humans may be in part

due to evolutionarily conserved reproductive biology. Importantly, in

humans, the causes of a large fraction of pregnancy failures remain

unclear despite decades of biomedical research (Pinar et al., 2018).

Thus, studies in wild non-human primates may therefore present valu-

able systems for understanding biological drivers of adverse preg-

nancy outcomes in humans.
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