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Causal mediation analysis seeks to investigate how the treatment effect
of an exposure on outcomes is mediated through intermediate variables. Al-
though many applications involve longitudinal data, the existing methods are
not directly applicable to settings where the mediator and outcome are mea-
sured on sparse and irregular time grids. We extend the existing causal me-
diation framework from a functional data analysis perspective, viewing the
sparse and irregular longitudinal data as realizations of underlying smooth
stochastic processes. We define causal estimands of direct and indirect ef-
fects accordingly and provide corresponding identification assumptions. For
estimation and inference, we employ a functional principal component analy-
sis approach for dimension reduction and use the first few functional principal
components instead of the whole trajectories in the structural equation mod-
els. We adopt the Bayesian paradigm to accurately quantify the uncertainties.
The operating characteristics of the proposed methods are examined via simu-
lations. We apply the proposed methods to a longitudinal data set from a wild
baboon population in Kenya to investigate the causal relationships between
early adversity, strength of social bonds between animals and adult glucocor-
ticoid hormone concentrations. We find that early adversity has a significant
direct effect (a 9–14% increase) on females’ glucocorticoid concentrations
across adulthood but find little evidence that these effects were mediated by
weak social bonds.

1. Introduction. Mediation analysis seeks to understand the role of an intermediate vari-
able (i.e., mediator) M that lies on the causal path between an exposure or treatment Z and
an outcome Y . The most widely used mediation analysis method, proposed by Baron and
Kenny (1986), fits two linear structural equation models (SEMs) between the three vari-
ables and interprets the model coefficients as causal effects. There is a vast literature on the
Baron–Kenny framework across a variety of disciplines, including psychology, sociology and
epidemiology (see MacKinnon (2012)). A major advancement in recent years is the incor-
poration of the potential-outcome-based causal inference approach (Neyman (1923), Rubin
(1974)). This led to a formal definition of relevant causal estimands, clarification of identifi-
cation assumptions and new estimation strategies beyond linear SEMs (Daniels et al. (2012),
Pearl (2001), Robins and Greenland (1992), Sobel (2008), Tchetgen Tchetgen and Shpitser
(2012), VanderWeele (2016)). In particular, Imai, Keele and Yamamoto (2010) proved that
the Baron–Kenny estimator can be interpreted as a special case of a causal mediation estima-
tor given additional assumptions. These methodological advancements opened up new appli-
cation areas, including imaging, neuroscience and environmental health (Lindquist (2012),
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Lindquist and Sobel (2011), Zigler, Dominici and Wang (2012), Kim et al. (2019)). Compre-
hensive reviews on causal mediation analysis are given in Nguyen, Schmid and Stuart (2020),
VanderWeele (2015).

In the traditional settings of mediation analysis, exposure Z, mediation M and outcome Y

are all univariate variables at a single time point. Recent work has extended to time-varying
cases, where at least one of the triplet (Z,M,Y ) is longitudinal. This line of research has
primarily focused on cases with time-varying mediators or outcomes that are observed on
sparse and regular time grids (Lin et al. (2017a), Roth and MacKinnon (2012), van der Laan
and Petersen (2008)). For example, VanderWeele and Tchetgen Tchetgen (2017) developed a
method for identifying and estimating causal mediation effects with time-varying exposures
and mediators based on marginal structural models (Robins, Hernan and Brumback (2000)).
Some researchers also investigated the case with time-varying exposure and mediator for the
survival outcome (Lin et al. (2017b), Zheng and van der Laan (2017)). Another stream of
research, motivated by applications in neuroimaging, focuses on cases where mediators or
outcomes are densely recorded continuous functions, for example, the blood-oxygen-level-
dependent (BOLD) signal collected in a functional magnetic resonance imaging (fMRI) ses-
sion. In particular, Lindquist (2012) introduced the concept of functional mediation in the
presence of a functional mediator and extended causal SEMs to functional data analysis
(Ramsay and Silverman (2005)). Zhao et al. (2018) further extended this approach to func-
tional exposure, mediator and outcome.

Sparse and irregularly-spaced longitudinal data are increasingly available for causal stud-
ies. For example, in electronic health records (EHR) data, the number of observations usually
varies between patients and the time grids are uneven. The same situation applies in animal
behavior studies due to the inherent difficulties in observing wild animals. Such data struc-
ture poses challenges to existing causal mediation methods. First, one cannot simply treat
the trajectories of mediators and outcomes as functions, as in Lindquist (2012), because the
sparse observations render the trajectories volatile and nonsmooth. Second, with irregular
time grids the dependence between consecutive observations changes over time, making the
methods based on sparse and regular longitudinal data such as VanderWeele and Tchetgen
Tchetgen (2017) not applicable. A further complication arises when the mediator and out-
come are measured with different frequencies even within the same individual.

In this paper we propose a causal mediation analysis method for sparse and irregular lon-
gitudinal data that address the aforementioned challenges. Similar to Lindquist (2012) and
Zhao et al. (2018), we adopt a functional data analysis perspective (Ramsay and Silver-
man (2005)), viewing the sparse and irregular longitudinal data as realizations of underly-
ing smooth stochastic processes. We define causal estimands of direct and indirect effects
accordingly and provide assumptions for nonparametric identification (Section 3). For esti-
mation and inference, we proceed under the classical two-SEM mediation framework (Imai,
Keele and Yamamoto (2010)) but diverge from the existing methods in modeling (Section 4).
Specifically, we employ the functional principal component analysis (FPCA) approach (Yao,
Müller and Wang (2005), Jiang and Wang (2010, 2011), Han et al. (2018)) to project the
mediator and outcome trajectories to a low-dimensional representation. We then use the first
few functional principal components (instead of the whole trajectories) as predictors in the
structural equation models. To accurately quantify the uncertainties, we employ a Bayesian
FPCA model (Kowal and Bourgeois (2020)) to simultaneously estimate the functional prin-
cipal components and the structural equation models. Though the Bayesian approach to me-
diation analysis has been discussed before (Daniels et al. (2012), Kim et al. (2017), Kim et
al. (2018)), it has not been developed for the setting of sparse and irregular longitudinal data.

Our motivating application is the evaluation of the causal relationships between early ad-
versity, social bonds and physiological stress in wild baboons (Section 2). Here, the exposure
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is early adversity (e.g., drought, maternal death before reaching maturity), the mediators are
the strength of adult social bonds and the outcomes are adult glucocorticoid (GC) hormone
concentrations, which is a measure of an animal’s physiological stress level. The exposure,
early adversity, is a binary variable measured at one time point, whereas both the mediators
and outcomes are sparse and irregular longitudinal variables. We apply the proposed method
to a prospective and longitudinal observational data set from the Amboseli Baboon Research
Project located in the Amboseli ecosystem, Kenya (Alberts and Altmann (2012)) (Section 5).
We find that experiencing one or more sources of early adversity leads to significant direct
effects (a 9–14% increase) on females” GC concentrations across adulthood but find little
evidence that these effects were mediated by weak social bonds. Though motivated from a
specific application, the proposed method is readily applicable to other causal mediation stud-
ies with similar data structure, including EHR and ecology studies. Furthermore, our method
is also applicable to regularly spaced longitudinal observations.

2. Motivating application: Early adversity, social bond and stress.

2.1. Biological background. Conditions in early life can have profound consequences
for individual development, behavior and physiology across the life course (Bateson et al.
(2004), Gluckman et al. (2008), Lindström (1999)). These early life effects are important,
in part, because they have major implications for human health. One leading explanation
for how early life environments affect adult health is provided by the biological embedding
hypothesis, which posits that early life stress causes developmental changes that create a
“proinflammatory” phenotype and elevated risk for several diseases of aging (Miller, Chen
and Parker (2011)). The biological embedding hypothesis proposes at least two, nonexclusive
causal pathways that connect early adversity to poor health in adulthood. In the first pathway,
early adversity leads to altered hormonal profiles that contribute to downstream inflammation
and disease. Under this scenario, stress in early life leads to dysregulation of hormonal sig-
nals in the body”s main stress response system, leading to the release of GC hormone, which
engages the body”s fight-or-flight response. Chronic activation is associated with inflamma-
tion and elevated disease risk (McEwen (1998, 2008), Miller, Cohen and Ritchey (2002)).
In the second causal pathway, early adversity hampers an individual’s ability to form strong
interpersonal relationships. Under this scenario the social isolation contributes to both altered
GC profiles and inflammation.

Hence, the biological embedding hypothesis posits that early life adversity affects both GC
profiles and social relationships in adulthood and that poor social relationships partly medi-
ate the connection between early adversity and GCs. Importantly, the second causal pathway,
mediated through adult social relationships, suggests an opportunity to transmit the negative
health effect of early adversity. Specifically, strong and supportive social relationships may
dampen the stress response or reduce individual exposure to stressful events, which in turn
reduces GCs and inflammation. For example, strong and supportive social relationships have
repeatedly been linked to reduced morbidity and mortality in humans and other social an-
imals (Holt-Lunstad, Smith and Layton (2010), Silk (2007)). In addition to the biological
embedding hypothesis, this idea of social mediation is central to several hypotheses that pro-
pose causal connections between adult social relationships and adult health, even independent
of early life adversity; these hypotheses include the stress buffering and stress prevention hy-
potheses (Cohen and Wills (1985), Landerman et al. (1989), Thorsteinsson and James (1999))
and the social causation hypothesis (Anderson and Marmot (2011), Marmot et al. (1991)).

Despite the aforementioned research, the causal relationships among early adversity, adult
social relationships and HPA (hypothalamic–pituitary–adrenal) axis dysregulation remain the
subject of considerable debate. While social relationships might exert direct effects on stress
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and health, it is also possible that poor health and high stress limit an individual’s ability to
form strong and supportive relationships. As such, the causal arrow flows backward, from
stress to social relationships (Case and Paxson (2011)). In another causal scenario, early ad-
versity exerts independent effects on social relationships and the HPA axis, and correlations
between social relationships and GCs are spurious, arising solely as a result of their indepen-
dent links to early adversity (Marmot et al. (1991)).

2.2. The data. In this paper we test whether the links between early adversity, the
strength of adult social bonds and GCs are consistent with predictions derived from the bi-
ological embedding hypothesis and other related theories. Specifically, we use data from a
well-studied population of savannah baboons in the Amboseli ecosystem in Kenya. Founded
in 1971, the Amboseli Baboon Research Project has prospective longitudinal data on early
life experiences and fine-grained longitudinal data on adult social bonds and GC hormone
concentrations, a measure of the physiological stress response (Alberts and Altmann (2012)).

Our study sample includes 192 female baboons. Each baboon entered the study after be-
coming mature at age 5, and we had information on its experience of six sources of early
adversity (i.e., exposure) (Tung et al. (2016), Zipple et al. (2019)): drought, maternal death,
competing sibling, high group density, low maternal rank and maternal social isolation. Ta-
ble 1 presents the number of baboons that experienced each early adversity. Overall, while
only a small proportion of subjects experienced any given source of early adversity, most
subjects experienced at least one source of early adversity. Therefore, in our analysis we also
create a cumulative exposure variable that summarizes whether a baboon experienced any
source of the adversity.

Each baboon’s adult social bonds (i.e., mediators) and fecal GC hormone concentrations
(i.e., outcomes) are measured repeatedly throughout its life on the same grid. Social bonds are
measured using the dyadic sociality index with females (DSI-F) (Silk, Altmann and Alberts
(2006)). The indices are calculated for each female baboon separately based on all visible
observations for social interactions between the baboon and other members in the entire so-
cial group within a given period. Larger values mean stronger social bonds. We normalized
the DSI-F measurements, and the normalized DSI-F values range from −1.47 to 3.31 with
mean value at 1.04 and standard deviation 0.51. The fecal GC concentrations were collected
opportunistically, and the values range from 7.51 to 982.87 with mean 74.13 and standard
deviation 38.25. Age is used to index within-individual observations on both social bond and
GC concentrations. Only about 20% baboons survive until age 18, and, thus, data on females
older than 18 years are extremely sparse and volatile. Therefore, we truncated all trajectories
at age 18, resulting in a final sample with 192 female baboons and 9878 observations.

TABLE 1
Sources of early adversity and the number of baboons experienced each type of early adversity. The last row

summarizes the number of baboons had at least one of six individual adversity sources

No. subjects did not experience No. subjects did experience
Early adversity (control) (exposure)

Drought 164 28
Competing sibling 153 39
High group density 161 31
Maternal death 157 35
Low maternal rank 152 40
Maternal social isolation 140 52
At least one 48 144
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FIG. 1. Observed trajectories of social bonds and GC hormone as a function of age of two randomly selected
female baboons in the study sample.

For wild animals the observations usually made on irregular or opportunistic basis. We
have on average 51.4 observations of each baboon for both social bonds and GC concentra-
tions, but the number of observations of a single baboon ranges from three to 113. Figure 1
shows the mediator and outcome trajectories as a function of age of two randomly selected
baboons in the sample. We can see that the frequency of the observations and time grids of
the mediator or outcome trajectories vary significantly between baboons.

We also have a set of static and time-varying covariates that are deemed important to wild
baboons’ physiology and behavior. These include reproductive state (i.e., cycling, pregnant
or lactating), density of the social group, max temperature in the last 30 days before the
fecal sample was collected, whether the sample is collected in wet or dry season, the amount
of rainfall, relative dominance rank of a baboon and number of coresident adult maternal
relatives. More information on the covariates’ exposure, mediator and outcomes can be found
in Rosenbaum et al. (2020).

3. Causal mediation framework.

3.1. Setup and causal estimands. Suppose we have a sample of N units (in the use case
described here, baboons); each unit i (i = 1,2, . . . ,N ) is assigned to a treatment (Zi = 1) or
a control (Zi = 0) group. For each unit i, we make observations at Ti different time points
{tij ∈ [0, T ], j = 1,2, . . . , Ti}, and Ti can vary between units. At each time point tij , we
measure an outcome Yij and a mediator Mij prior to the outcome and a vector of p time-
varying covariates Xij = (Xij,1, . . . ,Xij,p)′. For each unit the observations points are sparse
along the time span and irregularly spaced. For simplicity, we assume the observed time
grids for the outcome and the mediator are the same within one unit. However, our method is
directly applicable when the observation grids for the outcome and the mediator are different
for a given individual.



752 S. ZENG ET AL.

A key to our method is to view the observed mediator and outcome values drawn from
a smooth underlying process Mi(t) and Yi(t), t ∈ [0, T ] with Normal measurement errors,
respectively,

Mij = Mi(tij ) + εij , εij ∼N
(
0, σ 2

m

)
,(3.1)

Yij = Yi(tij ) + νij , νij ∼ N
(
0, σ 2

y

)
.(3.2)

Hence, instead of directly exploring the relationship between the treatment Zi , mediators Mij

and outcomes Yij , we investigate the relationship between Zi and the stochastic processes
Mi(tij ) and Yi(tij ). In particular, we wish to answer two questions: (a) how big is the causal
impact of the treatment on the outcome process, and (b) how much of that impact is mediated
through the mediator process?

To be consistent with the standard notation of potential outcomes in causal inference
(Imbens and Rubin (2015)), from now on we move the time index of the mediator and
outcome process to the superscript: Mi(t) = Mt

i , Yi(t) = Y t
i . Also, we use the follow-

ing bold font notation to represent a process until time t : Mt
i ≡ {Ms

i , s ≤ t} ∈ R[0,t], and
Yt

i ≡ {Y s
i , s ≤ t} ∈ R[0,t]. Similarly, we denote covariates between the j th and j + 1th time

point for unit i as Xt
i = {Xi1,Xi2, . . . ,Xij ′ } for tij ′ ≤ t < tij ′+1.

We extend the definition of potential outcomes to define the causal estimands. Specifically,
let Mt

i (z) ∈ R[0,t] for z = 0, 1, t ∈ [0, T ]; denote the potential values of the underlying me-
diator process for unit i until time t under the treatment status z; let Yt

i (z,m) ∈ R[0,t] be the
potential outcome for unit i until time t under the treatment status z and the mediator pro-
cess taking value of Mt

i = m with m ∈ R[0,t]. The above notation implicitly makes the stable
unit treatment value assumption (SUTVA) (Rubin (1980)), which states that: (i) there is no
different version of the treatment and (ii) there is no interference between the units, more
specifically, the potential outcomes of one unit do not depend on the treatment and mediator
values of other units. SUTVA is plausible in our application. First, there is unlikely different
versions of the early adversities. Second, though baboons live in social groups, it is unlikely a
baboon’s long-term GC concentration (outcome) was much affected by the early adversities
experienced by other cohabitant baboons in its social group, particularly considering the fact
that only a small proportion of baboons experienced any given early adversity. Moreover, the
social bond index (mediator) summarizes the interaction between a focal baboon and other
members in a social group, and, thus, we can view the impact from other baboons as constant
while examining the variation of social bond for the focal baboon. The notation of Yt

i (z,m)

makes another implicit assumption that the potential outcomes are determined by the media-
tor values m before time t but not after t . For each unit we can only observe one realization
from the potential mediator or outcome process,

Mt
i = Mt

i (Zi) = ZiMt
i (1) + (1 − Zi)Mt

i (0),(3.3)

Yt
i = Yt

i

(
Zi,Mt

i(Zi)
) = ZiYt

i

(
1,Mt

i (1)
) + (1 − Zi)Yt

i

(
0,Mt

i (0)
)
.(3.4)

We define the total effect (TE) of the treatment Zi on the outcome process at time t as

(3.5) τ t
TE = E

{
Y t

i

(
1,Mt

i (1)
) − Y t

i

(
0,Mt

i (0)
)}

.

When there is a mediator, the TE can be decomposed into direct and indirect effects. Be-
low, we extend the framework of Imai, Keele and Yamamoto (2010) to formally define these
effects. First, we define the average causal mediation (or indirect) effect (ACME) under treat-
ment z at time t by fixing the treatment status while altering the mediator process,

(3.6) τ t
ACME(z) ≡ E

{
Y t

i

(
z,Mt

i(1)
) − Y t

i

(
z,Mt

i(0)
)}

, z = 0,1.
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The ACME quantifies the difference between the potential outcomes, given a fixed treatment
status z, corresponding to the potential mediator process under treatment Mt

i (1) and that
under control Mt

i (0). In the previous literature, variants of the ACME are also called the
natural indirect effect (Pearl (2001)) or the pure indirect effect for τ t

ACME(0) and total indirect
effect for τ t

ACME(1) (Robins and Greenland (1992))
Second, we define the average natural direct effect (ANDE) (Imai, Keele and Yamamoto

(2010), Pearl (2001)) of treatment on the outcome at time t by fixing the mediator process
while altering the treatment status,

(3.7) τ t
ANDE(z) ≡ E

{
Y t

i

(
1,Mt

i (z)
) − Y t

i

(
0,Mt

i (z)
)}

.

The ANDE quantifies the portion in the TE that does not pass through the mediators.
It is easy to verify that the TE is the sum of ACME and ANDE,

(3.8) τ t
TE = τ t

ACME(z) + τ t
ANDE(1 − z), z = 0,1.

This implies we only need to identify two of the three quantities τTE, τ t
ACME(z), τ t

ANDE(z).
In this paper we will focus on the estimation of τTE and τ t

ACME(z). Because we only observe
a portion of all the potential outcomes, we cannot directly identify these estimands from the
observed data, which would require additional assumptions.

3.2. Identification assumptions. In this subsection we list the causal assumptions nec-
essary for identifying the ACME and ANDEs with sparse and irregular longitudinal data.
There are several sets of identification assumptions in the literature (Imai, Keele and Tin-
gley (2010), Pearl (2001), Robins and Greenland (1992), Shpitser and VanderWeele (2011),
Forastiere, Mattei and Ding (2018)) with subtle distinction (Ten Have and Joffe (2012)). Here
we follow the similar set of assumptions in Imai, Keele and Yamamoto (2010).

The first assumption extends the standard ignorability assumption and rules out the un-
measured treatment-outcome confounding.

ASSUMPTION 1 (Ignorability). Conditional on the observed covariates, the treatment
is unconfounded with respect to the potential mediator process and the potential outcomes
process,

{
Yt

i (1,m),Yt
i(0,m),Mt

i (1),Mt
i (0)

} ⊥⊥ Zi | Xt
i ,

for any t and m ∈ R[0,t].

In our context, Assumption 1 indicates that there is no unmeasured confounding, besides
the observed covariates, between the sources of early adversity and the processes of social
bonds and GCs. In other words, early adversity is randomized among the baboons with the
same covariates. This assumption is plausible given the early adversity events considered in
this study are largely imposed by nature.

The second assumption extending the sequential ignorability assumption in Imai, Keele
and Yamamoto (2010) to the functional data setting.

ASSUMPTION 2 (Sequential ignorability). There exists ε > 0 such that, for any 0 < � <

ε, the increment of the mediator process is independent of the increment of potential out-
comes process from time t to t + �, conditional on the observed treatment status, covariates
and the mediator process up to time t ,

{
Y t+�

i (z,m) − Y t
i (z,m)

} ⊥⊥ {
Mt+�

i

(
z′) − Mt

i

(
z′)} | {

Zi,Xt
i ,Mt

i

}
,

for any z, z′,0 < � < ε, t, t + � ∈ [0, T ], m ∈ R[0,T ].
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In our application, Assumption 2 implies that conditioning on the early adversity status,
covariates and the potential social bond history up to a given time point, any change in the
social bond values within a sufficiently small time interval � is randomized with respect to
the change in the potential outcomes. Namely, there are no unobserved mediator-outcomes
confounders in a sufficiently small time interval. Though it differs in the specific form, As-
sumption 2 is in essence the same sequential ignorability assumption used for the regularly
spaced observations in Bind et al. (2016) and VanderWeele and Tchetgen Tchetgen (2017).
This is a crucial assumption in mediation analysis but is strong and generally untestable in
practice because it is usually impossible to manipulate the mediator values, even in random-
ized trials.

Assumptions 1 and 2 are illustrated by the directed acyclic graphs (DAG) in Figure 2(a)
which condition on the covariates Xt

i and a window between two sufficiently close time points
t and t + �. The arrows between Zi , Mt

i , Y t
i represent a causal relationship (i.e., nonpara-

metric structural equation model), with solid and dashed lines representing measured and
unmeasured relationships, respectively. Figures 2(b) and 2(c) depict two possible scenarios
where Assumptions 1 and 2 are violated, respectively, where Ui represents an unmeasured
confounder.

Assumptions 1 and 2 allow nonparametric identification of the TE and ACME from the
observed data, as summarized in the following theorem.

Zi ...Mt
i Mt+�

i

...Y t
i Y t+�

i

(a) DAG of Assumption 1 and 2.

Zi ...Mi(t) Mi(t + �)

...Yi(t) Yi(t + �)Ui

Zi ...Mi(t) Mi(t + �)

...Yi(t) Yi(t + �)Ui

(b) DAG of two examples of violation to Assumption 1 (ignorability).

Zi ...Mi(t) Mi(t + �)

...Yi(t) Yi(t + �)

Ui

Zi ...Mi(t) Mi(t + �)

...Yi(t) Yi(t + �)

(c) DAG of two examples of violation to Assumption 2 (sequential ignorability).

FIG. 2. Directed acyclic graphs (DAG) of Assumptions 1, 2 and examples of possible violations. The arrows
between variables represent a causal relationship, with solid and dashed lines representing measured and unmea-
sured relationships, respectively.
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THEOREM 1. Under Assumption 1, 2 and some regularity conditions (specified in the
Supplementary Material (Zeng et al. (2021))), the TE, ACME and ANDE can be identified
nonparametrically from the observed data: for z = 0,1, we have

τ t
TE =

∫
X

{
E

(
Y t

i |Zi = 1,Xt
i = xt ) − E

(
Y t

i |Zi = 0,Xt
i = xt )} dFXt

i

(
xt ),

τ t
ACME(z) =

∫
X

∫
R[0,t]

E
(
Y t

i |Zi = z,Xt
i = xt ,Mt

i = m
)

dFXt
i

(
xt )

× d
{
FMt

i |Zi=1,Xt
i=xt (m) − FMt

i |Zi=0,Xt
i=xt (m)

}
,

where FW(·) and FW |V (·) denote the cumulative distribution of a random variable or a vector
W and the conditional distribution given another random variable or vector V , respectively.

The proof of Theorem 1 is provided in the Supplementary Material (Zeng et al. (2021)).
Theorem 1 implies that estimating the causal effects requires modeling two components:
(a) the conditional expectation of observed outcome process, given the treatment, covariates,
and the observed mediator process, E(Y t

i |Zi,Xt
i ,Mt

i), and (b) the distribution of the observed
mediator process, given the treatment and the covariates, FMt

i |Zi,Xt
i
(·). These two components

correspond to the two linear structural equations in the classic mediation framework of Baron
and Kenny (1986). In the setting of functional data, we can employ more flexible models,
instead of linear regression models, and express the TE and ACME as functions of the model
parameters. Theorem 1 can be readily extended to more general scenarios such as discrete
(i.e., as opposed to continuous) mediators and time-to-event outcomes.

4. Modeling mediator and outcome via functional principal component analysis. In
this section we propose to employ the functional principal component analysis (FPCA) ap-
proach to infer the mediator and outcome processes from sparse and irregular observations
(Yao, Müller and Wang (2005), Jiang and Wang (2010, 2011)). In order to take into account
the uncertainty due to estimating the functional principal components (Goldsmith, Greven
and Crainiceanu (2013)), we adopt a Bayesian model to jointly estimate the principal com-
ponents and the structural equation models. Specifically, we impose a Bayesian FPCA model
similar to that in Kowal and Bourgeois (2020) to project the observed mediator and outcome
processes into lower-dimensional representations and, then, take the first few dominant prin-
cipal components as the predictors in the structural equation models.

We assume the potential processes for mediators Mt
i (z) and outcomes Yt

i (z,m) have the
following Karhunen–Loeve decomposition:

Mt
i (z) = μM

(
Xt

i

) +
∞∑

r=1

ζ r
i,zψr(t),(4.1)

Y t
i (z,m) = μY

(
Xt

i

) +
∫ t

0
γ (s, t)m(s) ds +

∞∑
s=1

θs
i,zηs(t),(4.2)

where μM(·) and μY (·) are the mean functions of the mediator process Mt
i and outcome

process Yt
i , respectively; ψ r (t) and ηs(t) are the Normal orthogonal eigenfunctions for Mt

i

and Yt
i , respectively, and ζ r

i,z and θs
i,z are the corresponding principal scores of unit i. The

above model assumes that the treatment affects the mediation and the outcome processes
only through the principal scores. We represent the mediator and outcome process of each
unit with its principal score ζ r

i,z and θs
i,z. Given the principal scores, we can transform back to

the smooth process with a linear combination. As such, if we are interested in the differences
in the process, it is equivalent to investigate the difference in the principal scores. Also, as we
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usually require only three or four components to explain most of the variation, we reduce the
dimensions of the trajectories effectively by projecting the difference to the principal scores.
With the model specification in (4.2), we make an implicit assumption that the ACME and
ANDE are the same in the treatment and control groups in our application, τ t

ACME(0) =
τ t

ACME(1), τ t
ANDE(0) = τ t

ANDE(1), and, thus, there are no interactions between the treatment
and the mediator. This assumption leads to a unique decomposition of the TE for simple
interpretations (VanderWeele (2014)).

The underlying processes Mt
i and Yt

i are not directly observed. Instead, we assume the
observations Mij ’s and Yij ’s are randomly sampled from the respective underlying processes
with errors. For the observed mediator trajectories, we posit the following model that trun-
cates to the first R principal components of the mediator process:

Mij = X′
ij βM +

R∑
r=1

ζ r
i ψr(tij ) + εij , εij ∼ N

(
0, σ 2

m

)
,(4.3)

where ψr(t) (r = 1, . . . ,R) are the orthogonormal principal components, ζ r
i (r = 1, . . . ,R)

are the corresponding principal scores and εij is the measurement error. With similar
parametrization that used in Kowal and Bourgeois (2020), we express the principal com-
ponents as a linear combination of the spline basis b(t) = (1, t, b1(t), . . . , bL(t))′ in L + 2
dimensions and choose the coefficients pr ∈ RL+2 to meet the normal orthogonality con-
straints of the r th principal component,

ψr(t) = b(t)′pr , subject to
∫ T

0
ψ2

r (t) dt = 1,

∫ T

0
ψr ′(t)ψr ′′(t) dt = 0, r ′ 	= r ′′.(4.4)

We assume the principal scores ζ r
i are randomly drawn from normal distributions with dif-

ferent means in the treatment and control groups, χr
1 and χr

0 , and diminishing variance as r

increases,

ζ r
i ∼N

(
χr

Zi
, λ2

r

)
, λ2

1 ≥ λ2
2 ≥ · · ·λ2

R ≥ 0.(4.5)

We select the truncation term R based on the fraction of explained variance (FEV),∑R
r=1 λ2

r /
∑∞

r=1 λ2
r being greater than 90%.

For the observed outcome trajectories, we posit a similar model that truncates to the first
S principal components of the outcome process,

Yij = XT
ijβY +

∫ tij

0
γ (u, t)Mu

i du +
S∑

s=1

ηs(t)θ
s
i + νij , νij ∼ N

(
0, σ 2

y

)
.(4.6)

We express the principal components ηs as a linear combination of the spline basis b(t), with
the normal orthogonality constraints,

ηs(t) = b(t)′qs, subject to
∫ T

0
ηs(t)

2 dt = 1,

∫ T

0
ηs′(t)ηs′′(t) dt = 0, s′ 	= s′′.(4.7)

Similarly, we assume that the principal scores of the outcome process for each unit come
from two different normal distributions in the treatment and control group with means ξ s

1 and
ξ s

0 , respectively, and a shrinking variance ρ2
s ,

θs
i ∼N

(
ξ s
Zi

, ρ2
s

)
, ρ2

1 ≥ ρ2
2 ≥ · · ·ρ2

S ≥ 0.(4.8)

We select the truncation term S, based on the FEV being greater than 90%, namely,∑S
s=1 ρ2

s /
∑∞

s=1 ρ2
s ≥ 90%.
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We assume the effect of the mediation process on the outcome is concurrent, namely, the
outcome process at time t does not depend on the past value of the mediation process. As
such, γ (u, t) can be shrunk to γ , instead of the integral in Model (4.6),

Yij = XT
ijβY + γMij +

S∑
s=1

ηs(t)θ
s
i + νij , νij ∼ N

(
0, σ 2

y

)
.(4.9)

The causal estimands, the TE and ACME can be expressed as functions of the parameters
in the above mediator and outcome models,

τ t
TE =

S∑
s=1

(
ξ s

1 − ξ s
0
)
ηs(t) + γ

R∑
r=1

(
χr

1 − χr
0
)
ψr(t),(4.10)

τ t
ACME =

R∑
r=1

γ
(
χr

1 − χr
0
)
ψr(t).(4.11)

To account for the uncertainty in estimating the above models, we adopt the Bayesian
paradigm and impose prior distributions for the parameters (Kowal and Bourgeois (2020)).
For the basis function b(t) to construct principal components, we choose the thin-plate spline,
which takes the form b(t) = (1, t, (|t − k1|)3, . . . , |t − kL|3)′ ∈ RL+2, where the kl (l =
1,2, . . . ,L) are the predefined knots on the time span. We set the values of knots kl with the
quantiles of observation time grids. For the parameters of the principal components, taking
the mediator model as an example, we impose the following priors on the parameters in (4.4):

pr ∼ N
(
0, h−1

r �−1)
, hr ∼ Uniform

(
λ2

r ,104)
,

where � ∈ R(L+2)×(L+2) is the roughness penalty matrix and hr > 0 is the smooth parameter.
The implies a Gaussian process prior on ψr(t) with mean function zero and covariance func-
tion Covψr(t),ψr(s)) = hrb′(s)�b(t). We choose the � such that [�r ]l,l′ = (kl −kl)

2,when
l, l′ > 2, and [�r ]l,l′ = 0 when l, l′ ≤ 2. For the distribution of principal scores in (4.5), we
specify a multiplicative Gamma prior (Bhattacharya and Dunson (2011), Montagna et al.
(2012)) on the variance to encourage shrinkage as r increases,

χr
0 , χr

1 ∼ N
(
0, σ 2

χr

)
, σ−2

χr
= ∏

l≤r

δχl
, δχ1 ∼ Ga(aχ1,1), δχl

∼ Ga(aχ2,1), l ≥ 2,

λ−2
r = ∏

l≤r

δl, δ1 ∼ Ga(a1,1), δl ∼ Ga(a2,1), l ≥ 2,

a1, aχ1 ∼ Ga(2,1), a2, aχ2 ∼ Ga(3,1).

Further details on the hyperparameters of the priors can be found in Bhattacharya and Dun-
son (2011) and Durante (2017). For the coefficients of covariates βM , we specify a diffused
normal prior βM ∼ N (0,1002 ∗ Idim(X)). We impose similar prior distributions for the pa-
rameters in the outcome model.

Posterior inference can be obtained by Gibbs sampling. The credible intervals of the causal
effects τ t

TE and τ t
ACME can be easily constructed using the posterior sample of the parameters

in the model. Details of the Gibbs sampler are provided in the Supplementary Material (Zeng
et al. (2021)).

5. Empirical application.

5.1. Results of FPCA. We apply the method and models proposed in Sections 3 and 4 to
the data described in Section 2.2 to investigate the causal relationship between early adversity,
social bonds and stress in wild baboons. Here, we first summarize the results of FPCA of the
observed trajectories. We posit Model (4.3) for the social bonds and Model (4.9) for the GC
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FIG. 3. The first two functional principal components of the process of the mediator, that is, social bonds (left
panel) and the outcome, that is, GC concentrations (right panel).

concentrations, with some modifications. First, we added two random effects, one for social
group and one for hydrological year, in both models. Second, in the outcome model we use
the log transformed GC concentrations instead of the original scale as the outcome, which
allows us to interpret the coefficient as the percent difference in GC concentrations between
the treatment and control groups. For both the mediator and outcome processes, the first three
functional principal components explain more than 90% of the total variation, and, thus, we
use them in the structural equation model for mediation analysis. Figure 3 shows the first
two principal components extracted from the mediator (left panel) and outcome (right panel)
processes. For the social bond process the first two principal components explain 53% and
31% of the total variation, respectively. The first component depicts a drastic change in the
early stage of a baboon’s life and stabilizes afterward. The second component is relatively
stable across the life span. For the GC process the first two functional principal components
explain 54% and 34% of the total variation, respectively. The first component depicts a stable
trend throughout the life span. The second component shows a quick rise, then steady drop
pattern across the lifespan.

The left panel of Figure 4 displays the observed trajectory of GCs vs. the posterior mean
of the imputed smooth process of three baboons who experienced zero (EAG), one (OCT)
and two (GUI) sources of early adversity, respectively. We can see that the imputed smooth
process generally captures the overall time trend of each subject while reducing the noise in
the observations. The pattern is similar for the animals’ social bonds, which is shown in the
Supplementary Material (Zeng et al. (2021)) with a few more randomly selected subjects. Re-
call that each subject’s observed trajectory is fully captured by its vector of principal scores,
and, thus, the principal scores of the first few dominant principal components adequately
summarize the whole trajectory. The right panel of Figure 4 shows the principal scores of
the first (X-axis) vs. second (Y-axis) principal component for the GC process of all subjects
in the sample, plotted in clusters based on the number of early adversities experienced. We
can see that significant differences exist in the distributions of the first two principal scores
between the group who experienced no early adversity and the groups experienced one or
more sources of adversity.

5.2. Results of causal mediation analysis. We perform a separate causal mediation anal-
ysis for each source of early adversity. Table 2 presents the posterior mean and 95% credible
interval of the total effect (TE), direct effect (ANDE) and indirect effect mediated through



MEDIATION ANALYSIS WITH LONGITUDINAL DATA 759

FIG. 4. Left panel: Observed trajectory of GCs vs. the posterior mean of its imputed smooth process of three
baboons who experienced zero (EAG), one (OCT) and two (GUI) sources of early adversity, respectively. Right
panel: Principal scores of the first (X-axis) vs. second (Y -axis) principal component for the GC process of all
subjects in the sample, plotted in clusters based on the number of early adversities experienced.

social bonds (ACME) of each source of early adversity on adult GC concentrations as well
as the effects of early adversity on the mediator (social bonds). First, from the first column of
Table 2 we can see that experiencing any source of early adversity would reduce the strength
of a baboon’s social bond strength with other baboons in adulthood. The negative effect is
particularly severe for those who experienced drought, high group density or maternal death
in early life. For example, compared with the baboons who did not experience any early ad-
versity, the baboons who experienced maternal death have a 0.221 unit decrease in social
bonds, translating to a 0.4 standard deviation difference in social bond strength in this popu-
lation. Overall, experiencing at least one source of early adversity corresponds to social bonds
that are 0.2 standard deviations weaker in adulthood.

TABLE 2
Total, direct and indirect causal effects of individual and cumulative sources of early adversity on social bonds

and GC concentrations in adulthood in wild female baboons. 95% credible intervals are in the parentheses

Source of adversity Effect on mediator τTE τACME τANDE

Drought −0.164 0.124 0.009 0.114
(−0.314,−0.014) (0.007,0.241) (0.000,0.017) (0.005,0.222)

Competing sibling −0.106 0.084 0.006 0.078
(−0.249,0.030) (−0.008,0.172) (0.003,0.009) (−0.012,0.163)

High group density −0.271 0.123 0.015 0.108
(−0.519,−0.023) (−0.052,0.281) (0.000,0.029) (−0.053,0.252)

Maternal death −0.221 0.061 0.011 0.049
(−0.423,−0.019) (−0.006,0.129) (0.005,0.014) (−0.014,0.113)

Low maternal rank −0.052 0.134 0.008 0.126
(−0.298,0.001) (0.011,0.256) (0.005,0.011) (0.008,0.244)

Maternal social isolation −0.040 0.035 0.002 0.033
(−0.159,0.095) (−0.045,0.116) (0.000,0.005) (−0.044,0.111)

At least one −0.102 0.092 0.007 0.084
(−0.195,−0.008) (0.005,0.178) (0.002,0.009) (0.009,0.159)
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Second, from the second column of Table 2 we can see a strong total effect of early ad-
versity on female baboon’s GC concentrations across adulthood. Baboons who experienced
at least one source of adversity had GC concentrations that were approximately 9% higher
than their peers who did not experience any adversity. Although the range of total effect sizes
across all individual adversity sources varies from 4% to 14%, the point estimates are con-
sistently toward higher GC concentrations, even for the early adversity sources for which the
credible interval includes zero. Among the individual sources of adversity, females who were
born during a drought, into a high-density group or to a low-ranking mother had particularly
elevated GC concentrations (12–14%) in adulthood, although the credible interval of high
group density includes zero.

Third, while female baboons who experienced harsh conditions in early life show higher
GC concentrations in adulthood, we found no evidence that these effects were significantly
mediated by the absence of strong social bonds. Specifically, the mediation effect τACME
(third column in Table 2) is consistently small; the strength of females’ social bonds with
other females accounted for a difference in GCs of only 0.85% when averaged across the six
individual adversity sources, even though the credible intervals did not include zero for five of
the six individual adversity sources. On the other hand, the direct effects τANDE (fourth col-
umn in Table 2) are much stronger than the mediation effects. When averaged across the six
adversity sources, the direct effect of early adversity on GC concentrations was 11.6 times
stronger than the mediation effect running through social bonds. For example, for females
who experienced at least one source of early adversity, the direct effect explain an 8.4% dif-
ference in GC concentrations, while the mediation effect only takes up 0.7% for the difference
in GCs.

We also assess the plausibility of the key causal assumptions in the application. One pos-
sible violation can be due to “feedback” between the social bond and GC processes, as is
shown in Figure 2(c). We performed a sensitivity analysis by adding: (a) the most recent
prior observed GC value or (b) the average of all past observed GC values, as a predictor in
the mediation model, which led to little difference in the results and thus bolsters sequential
ignorability. Though we are not aware of the existence of other sequential confounders, we
also cannot rule them out.

The above findings on the causal relationships among early adversity, social bonds and GC
concentrations in wild baboons are compatible with observations in many other species that
early adversity and weak relationships both give rise to poor health and that early adversity
predicts various forms of social dysfunction, including weaker relationships. However, they
call into question the notion that social bonds play a major role in mediating the effect of early
adversity on poor health. In wild female baboons any such effect appears to be functionally
biologically irrelevant or minor.

6. Simulations. In this section, we conduct simulations to further evaluate the operating
characteristics of the proposed method and compare it with two standard methods.

6.1. Simulation design. We generate 200 units to approximate the sample size in our
application. For each unit we make Ti observations at the time grid {tij ∈ [0,1], j =
1,2, . . . , Ti}. We draw Ti from a Poisson distribution with mean T and randomly pick tij
uniformly,

Ti ∼ Poisson(T ), tij ∼ Uniform(0,1), j = 1,2, . . . , Ti.

For each unit i and time j , we generate three covariates from a trivariate Normal distribution,
Xij = (Xij1,Xij2,Xij3) ∼ N ([0,0,0]T , σ 2

XI3). We simulate the binary treatment indicator
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from Zi = 1{ci1 > 0}, where ci1 ∼ N (0,1). To simulate the sparse and irregular mediator
trajectories, we first simulate a smooth underlying process Mt

i (z) for the mediators,

Mt
i (z) = 0.2 + {

0.2 + 2t + sin(2πt)
}
)(z + 1) − Xij1 + 0.5Xij2 + εm

i (t) + ci2,

where the error term εm
i (t) ∼ GP(0, σ 2

mexp{−8(s − t)2}) is drawn from a Gaussian process
(GP) with an exponential kernel and σ 2

m controlling the volatility of the realized curves and
ci2 ∼ N (0, σ 2

m) to represent the individual random intercepts. The mean value of the mediator
process depends on the covariates and time index t . The polynomial term and the trigonomet-
ric function of t introduce the long-term growth trend and periodic fluctuations, respectively.
Also, the coefficient of z evolves as the time changes, implying a time-varying treatment
effect on the mediator. Similarly, we specify a GP model for the outcome process,

Y t
i (z,m) = mt + cos(2πt) + 0.1t2 + 2t + {

cos(2πt) + 0.2t2 + 3t
}
z

− 0.5Xij2 + Xij3 + ε
y
i (t) + ci3,

where the error term ε
y
i (t) ∼ GP(0, σ 2

y exp{−8(s − t)2}) is drawn from a GP and ci3 ∼
N (0, σ 2

y ) controls the individual random effects for the outcome process.
The above settings imply nonlinear true causal effects (τ t

TE and τ t
ACME) in time, which

are shown as the dashed lines in Figure 5. Upon simulating the processes, we evaluate the
potential values of the mediators and outcomes at the sampled time point tij to obtain the
observed trajectories with measurement error,

Mij ∼ N
(
M

tij
i (Zi),1

)
, Yij ∼ N

(
Y

tij
i

(
Zi,M

tij
i (Zi)

)
,1

)
.

We control the sparsity of the mediator and outcome trajectories by varying the value of T in
the grid of (15,25,50,100), namely, the average number of observations for each individual.

We compare the proposed method in Section 4 (abbreviated as MFPCA) with two standard
methods in longitudinal data analysis: the random effects model (Laird and Ware (1982)) and
the generalized estimating equations (GEE) (Liang and Zeger (1986)). To facilitate the com-
parisons, we aggregate the time-varying mediation effects into the following scalar values:

τACME =
∫ T

0
τ t

ACME dt, τTE =
∫ T

0
τ t

TE dt.

The true values for τACME and τTE in the simulations are 1.20 and 2.77, respectively.

FIG. 5. Posterior mean of τ t
TE, τ t

ACME and 95% credible intervals in one simulated dataset under each level of
sparsity with 200 units. The solid lines are the true surfaces for τ t

TE and τ t
ACME.
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For the random effects approach, we fit the following two models:

Mij = XT
ijβM + sm(Tij ) + τmZi + rm

ij + εm
ij ,(6.1)

Yij = XT
ijβY + sy(Tij ) + τyZi + γMij + r

y
ij + ε

y
ij ,(6.2)

where rm
ij and r

y
im are normally distributed random effects with zero means, sm(Tij )

and sy(Tij ) are thin plate splines to capture the nonlinear effect of time. To model the
time dependency, we specify an AR(1) correlation structure for the random effects, thus
Corr(rm

ij , rm
ij+1) = p1, Corr(ry

ij , r
y
ij+1) = p2, namely, the correlation decay exponentially

within the observations of a given unit. Given the above random effects model, the medi-
ation effect and TE can be calculated as: τ̂RD

ACME = γ̂ τ̂m, τ̂RD
TE = γ̂ τ̂m + τ̂y .

For the GEE approach, we specify the following estimation equations:

E(Mij |Xij ,Zi) = XT
ijβM + τmZi,(6.3)

E(Yij |Mij ,Xij ,Zi) = XT
ijβM + τyZi + γMij .(6.4)

For the working correlation structure we consider the AR(1) correlation for both the me-
diators and outcomes. Similarly, we obtain the estimations through τ̂GEE

ACME = γ̂ τ̂m, τ̂GEE
TE =

γ̂ τ̂m + τ̂y with two different correlation structures.
It is worth noting that both the random effects model and the GEE model generally lack

the flexibility to accommodate irregularly-spaced longitudinal data, which renders specifying
the correlation between consecutive observations difficult. For example, though the AR(1)

correlation takes into account the temporal structure of the data, it still requires the correlation
between any two consecutive observations to be constant, which is unlikely to be the case in
use cases with irregularly-spaced data. Nonetheless, we compare the proposed method with
these two models, as they are the standard methods in longitudinal data analysis.

6.2. Simulation results. We apply the proposed MFPCA method, the random effects
model and the GEE model in Section 6.1 to the simulated data {Zi,Xij ,Mij , Yij }, to esti-
mate the causal effects τTE and τACME.

Figure 5 shows the causal effects and associated 95% credible interval estimated from MF-
PCA in one randomly selected simulated dataset under each of the four levels of sparsity T .
Regardless of T , MFPCA appears to estimate the time-varying causal effects satisfactorily,
with the 95% credible interval covering the true effects at any time. As expected, the accuracy
of the estimation increases as the frequency of the observations increases.

Table 3 presents the absolute bias, root mean squared error (RMSE) and coverage rate
of the 95% confidence interval of τTE and τACME under the MFPCA, the random effects
model and the GEE model based on 1000 simulated datasets for each level of sparsity T

in [15,25,50,100]. The performance of all three methods improves as the frequency of ob-
servations increases. With low frequency (T < 100), that is, sparse observations, MFPCA
consistently outperforms the random effects model, which in turn outperforms GEE in all
measures. The advantage of MFPCA over the other two methods diminishes as the frequency
increases. In particular, with dense observations (T = 100), MFPCA leads to similar results
as random effects, though both still outperform GEE. The simulation results bolster the use
of our method in the case of sparse data.

We also conducted the same simulations with larger sample sizes, N = 500,1000. MF-
PCA’s advantage over the random effects and GEE models in terms of bias and RMSE in-
creases as the sample size increases. With N = 500, MFPCA already achieves a coverage
rate close to the nominal level. We leave the detailed results to the Supplementary Material
(Zeng et al. (2021)).
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TABLE 3
Absolute bias, RMSE and coverage rate of the 95% confidence interval of MFPCA, the random effects model and

the generalized estimating equation (GEE) model under different frequency of observations in the simulations

τTE τACME

Method Bias RMSE Coverage Bias RMSE Coverage

T = 15
MFPCA 0.103 0.154 88.4% 0.134 0.273 86.4%
Random effects 0.165 0.208 78.2% 0.883 1.673 69.5%
GEE 0.183 0.304 77.6% 0.987 2.051 61.8%

T = 25
MFPCA 0.092 0.123 92.3% 0.102 0.246 90.6%
Random effects 0.124 0.165 81.2% 0.679 1.263 72.3%
GEE 0.152 0.273 80.3% 0.860 1.753 64.4%

T = 50
MFPCA 0.087 0.112 93.5% 0.094 0.195 92.3%
Random effects 0.109 0.134 90.3% 0.228 0.497 88.8%
GEE 0.121 0.175 83.5% 0.236 0.493 80.8%

T = 100
MFPCA 0.053 0.089 94.3% 0.064 0.163 93.1%
Random effects 0.046 0.093 93.1% 0.053 0.154 92.8%
GEE 0.093 0.124 90.5% 0.098 0.161 90.3%

7. Discussion. We proposed a framework for conducting causal mediation analysis with
sparse and irregular longitudinal mediator and outcome data. We defined several causal es-
timands (total, direct and indirect effects) in such settings and specified structural assump-
tions to nonparametrically identify these effects. For estimation and inference, we combine
functional principal component analysis (FPCA) techniques and the standard two structural-
equation-model system. In particular, we use a Bayesian FPCA model to reduce the di-
mensions of the observed trajectories of mediators and outcomes. We applied the proposed
method to analyze the causal effects of early adversity on adult social bonds and adult GC
hormone concentrations in a sample of wild female baboons. We found that experiencing ad-
versity before maturity generally hampers a baboon’s ability to build social bonds with other
baboons and increases GC hormone concentrations in adulthood. Chronically elevated stress
hormones have been linked to disease in many species. However, the effect of early adversity
on adult GC concentrations does not appear to be mediated by the strength of the animals’
social bonds, at least in wild baboons.

Identification of the causal effects in our method relies a set of structural assumptions. In
particular, sequential ignorability plays a key role, but it is untestable. In our application we
have adjusted for all important confounders related to the sequential ignorability, according
to our substantive biological knowledge, but we still cannot rule out the possibility of un-
observed confounders. For example, the loss of a close companion would affect a baboon’s
social bond and stress afterward, but such data may be not systematically collected. This is
a common challenge in causal mediation analysis. Conducting a sensitivity analysis would
shed light on the consequences of violating such assumptions (Imai, Keele and Yamamoto
(2010)). However, it is a nontrivial task to design a sensitivity analysis in complex settings
such as ours, which usually involves more untestable structural and modeling assumptions.
This is probably why sensitivity analysis is rarely performed in the causal mediation analy-
sis literature despite its obvious value. Nonetheless, we believe it is important to explicitly
acknowledge this limitation in applications and be cautious with interpretation, and, if possi-
ble, design and conduct sensitivity analysis. Alternatively, one could consider the framework
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developed by Didelez, Dawid and Geneletti (2006), VanderWeele, Vansteelandt and Robins
(2014) and relax sequential ignorability to allow for observed treatment-induced mediator-
outcome confounding. However, this framework targets a different set of causal estimands
from those considered in this paper and thus would have to be modified accordingly.

An important extension of our method is to incorporate time-to-event outcomes, a com-
mon practice in longitudinal studies (Lange, Vansteelandt and Bekaert (2012), VanderWeele
(2011)). For example, it is of much scientific interest to extend our application to investigate
the causal mechanisms among early adversity, social bonds, GC concentrations and length
of lifespan. A common complication in the causal mediation analysis with time-to-event out-
comes and time-varying mediators is that the mediators are not well defined for the time
period in which a unit was not observed (Didelez (2019), Vansteelandt et al. (2019)). Within
our framework, which treats the time-varying observations as realizations from a process, we
can bypass this problem by imputing the underlying smooth process of the mediators in an
identical range for every unit.
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