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People who are more socially integrated or have higher socio-economic status
live longer. Recent studies in non-humanprimates show striking convergences
with this human pattern: female primates with more social partners, stronger
social bonds or higher dominance rank all lead longer lives. However,
it remains unclear whether social environments also predict survival in male
non-human primates, as it does in men. This gap persists because, in most
primates, males disperse among social groups, resulting in many males who
disappear with unknown fate and have unknown dates of birth. We present
a Bayesian model to estimate the effects of time-varying social covariates on
age-specific adult mortality in both sexes of wild baboons. We compare how
the survival trajectories of both sexes are linked to social bonds and social
status over the life. We find that, parallel to females, male baboons who are
more strongly bonded to females have longer lifespans. However, males
with higher dominance rank for their age appear to have shorter lifespans.
This finding brings new understanding to the adaptive significance of
heterosexual social bonds for male baboons: in addition to protecting the
male’s offspring from infanticide, these bonds may have direct benefits to
males themselves.

This article is part of the theme issue ‘Evolution of the primate ageing
process’.
1. Background
Sociologists have long known that social integration [1,2] and socio-economic
status [3,4] are among the most powerful predictors of mortality risk in
humans. In the last decade, similar strong relationships between lifespan and
social environments have been revealed in primates [5–13], hyraxes [14], ungu-
lates [15,16], whales [17,18], rodents [19], carnivores [20] and lagomorphs [21].
These findings have enhanced our understanding of the evolution of animal
social relationships and uncovered links between sociality and ageing [22].

Evolutionary theories to explain sex differences in lifespan posit that males
and females have different optima in tradeoffs between survival and reproduc-
tion [23]. Nonetheless, in long-lived iteroparous mammals, empirical and
theoretical work indicates that lifespan is the most important component of
Darwinian fitness in both males and females [24,25]. In spite of this fact, the
relationship between social environments and survival in male mammals
remains understudied. In the recent proliferation of studies linking social
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gradients to survival in wild mammals, the sexes were not
differentiated in some cases [8,10], but in others, only females
have been studied [5–7,9,11–13,26–28]. This focus on females
stems from the fact that, in most social mammals, including
most primates, females typically remain in their natal group
throughout their lives, while males move in and out of
study populations, resulting in individuals with truncated
data (unknown dates of birth) and censored data (disap-
peared with unknown fate). Therefore, it remains unclear to
what extent strong social bonds and high social status
enhance longevity in male non-human primates, as they do
in men [1,2,4,29,30]. Understanding the link between social
environments and longevity in males is important: if the
male pattern is different to the female pattern, different selec-
tion pressures on social behaviour will apply in the two sexes;
if the patterns are similar, social relationships for males might
have fitness benefits that have previously been overlooked.

Recently, Bayesian estimation methods have been devel-
oped to overcome the challenge of estimating age-specific
mortality trajectories from datasets with highly censored and
truncated data [31]. A key advantage of these methods is
that the various sources of uncertainty—including ages of
immigrant animals and the fates of animals that disappear—
are propagated through to the parameter estimates of the
posterior distributions for more reliable inference. However,
until now these methods have not incorporated covariates
that vary over the life course. Here, we present a Bayesian
model that enabled us to include time-varying covariates of
social bond strength and social status (dominance rank) in esti-
mating age-specific mortality inwildmale and female baboons
(Papio cynocephalus). We apply this model to an unprecedented
dataset spanning 35 years of longitudinal life-history data and
fine-grained observations of social environments for 265 adult
female and 277 adult male baboons in Amboseli, Kenya. Our
methodological advances enable us to compare, for the first
time, how the survival trajectories of both males and females
are linked to social bonds and social status in a wild non-
human primate. Our results contribute to a growing body of
evidence that takes advantage of non-human primate studies
to shed light on physiological, reproductive and actuarial
senescence in humans, and on the evolution of lifespan [31–37].

2. Methods
(a) Study system and subjects
The baboons of the Amboseli basin, southern Kenya (2.667 S,
37.283 E) have been under continuous observation since 1971
[38]. Like most species of baboons, the study subjects live in
multi-male, multi-female social groups in which individuals
mate and socialize with multiple partners [39]. Amboseli lies in a
hybrid zone between two baboon species; study subjects are
yellow baboons (Papio cynocephalus) that show both historic
and recent admixture with anubis baboons (Papio anubis) [40–43].
The subjects included n = 542 adult baboons—265 females and
277 males—that resided in study groups between January 1984
and December 2018, and were individually recognized and fol-
lowed on a near-daily basis. To focus on adult survival, we
excluded data prior to age 5 years for females (when menarche
most often occurs) and 7 years for males (the earliest age in
which males attain a dominance rank among other adult males
[44]). Birth dates were known to within a few days for 232 of 265
females and 108 of 277males (62.7% of subjects). For the remaining
individuals, ages were estimated by experienced observers and
bracketedwithmaximumandminimum estimates (162 immigrant
males, 23 females and 5males born before observations on a group
began, and 10 females and 2 males with more than a few days of
uncertainty in the birth date). This estimated age then informed
a process of modelling individual age, as described below.

(b) Social bonds
We included time-varying measures of social bond strength in our
models of age-specificmortality. Tomake these values comparable
over the life courses of different individuals, each individual’s cov-
ariates were measured during each 1-year age class lasting from
one birthday to the next. A year of life could be incomplete on
the left if the individual entered the study between birthdays,
either by reaching adulthood, immigrating, or at the onset of
observations on their study group. A year of life could be incom-
plete on the right by death or censoring (i.e. disappearance from
the population, or reaching the end of the study period).

We quantified each individual’s social bond strength with
male and female social partners separately using an approach
modified from previous studies [6,45,46]. We first calculated a
‘dyadic sociality index’ (DSI) thatmeasures bond strength between
pairs of adult animals in each group in each year of life based
on dyadic grooming behaviour (see electronic supplementary
material). The DSI is calculated from the relative frequencies
withwhich each dyad exchanged grooming, corrected for observer
effort (i.e. corrected for a bias that results from differences in social
group sizes; see electronic supplementary material, figures S1
and S2). This initial DSI value for a given dyad, therefore, rep-
resents the ‘strength’ of their grooming relationship relative to all
other dyads in the population, controlling for observer effort.

After obtaining these initial DSI values, we standardized the
DSI values of all adult dyads in the population during the given
year of life, separately for female–female dyads and female–male
dyads, using z-score transformations. This standardization enabled
us to define DSI as the dyad’s bond strength relative to all other
grooming dyads of that type that were present at the same time
in the study population. Notably, female–female and female–
male dyads exhibit qualitatively similar rates of grooming, and
one bond type is not substantially stronger than the other in a
given life year (electronic supplementary material, figure S3). By
standardizing, we removed the effects of population-wide fluctu-
ations in grooming rates due to environmental or demographic
factors that varied among life years (electronic supplementary
material, figure S4). For female subjects, we defined DSIF as the
mean DSI value between the focal female and her top three
female grooming partners, and DSIM as the mean DSI value
between the focal female and her top threemale groomingpartners.
For male subjects, we only calculated DSIF, as adult male–male
dyads do not regularly groom each other in this population.

(c) Social status
We used time-varying measures of social status in our models of
age-specific mortality, by measuring each individual’s dominance
rank during each 1-year age class. Adult females and males were
ranked separately, based on observations of decided dyadic agon-
istic interactions between two adult animals of the same sex,
collected via representative interaction sampling. Decided inter-
actions were those in which one animal gave only aggressive or
neutral behaviours while the other animal gave only submissive
behaviours. Wins and losses for each month were compiled in a
pairwise interaction matrix, and ordinal ranks for that month
were determined by minimizing the number of wins below the
diagonal. We converted these ordinal ranks to proportional
ranks that expressed the proportion of adult animals of the same
sex in the same group that were dominated by the focal animal.
Proportional ranks ranged from 0 (lowest-ranking) to 1 (highest-
ranking). In the mortality models, we used the mean of each
individual’s monthly dominance ranks in each year of life.
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(d) Models of age-specific mortality
We extended the model developed by Colchero and colleagues
[31,47] to make inferences on age-specific mortality of male
and female baboons when age information is uncertain and
when males disperse outside the study population. The model
requires estimating dispersal outside the study population,
which we call out-migration (i.e. permanent departure from the
study groups), because many individuals were still alive when
they were last seen and thus they could have either died or left
the study population to join other groups. In our dataset of 265
females and 277 males, departure from the study occurred by
death for 129 females (48.7%) and 41 males (14.8%), by right-
censoring (i.e. alive at the end of observation period) for 136
females (51.3%) and 129 males (46.6%), and by disappearance
with unknown fate for 0 females and 107 males (38.6%).

Ourmodel of adultmortality is conditioned on reachingmatur-
ity, age α (5 for females and 7 for males). Because some animals
(e.g. immigrants) had uncertain ages, to define the survival inter-
vals, we defined random variables for ages at death X, for ages at
natal out-migration Y, and for ages at immigrant out-migration Z,
with realizations x, y, z≥ 0, where x = (age at death − α), y = (age
at natal out-migration− α), and z = (age at immigrant out-migration
− α). Natal out-migration refers to the first out-migration of individ-
uals who were in the study population when they reached age at
maturity, whereas immigrant out-migration refers to first, second,
and subsequent out-migrations of individuals who entered the
study population after reaching age at maturity (immigrants). We
also defined a random variable indicator O for the out-migration
state, which gets a value of 1 if the individual had out-migrated
and 0 otherwise.

To model mortality, we used the Gompertz law [48], which
fits well the adult mortality of baboons [32]. The mortality risk
(or hazard) of the Gompertz model is usually expressed as

m(x) ¼ a ebx,

where x refers to age, and a, b > 0 are the baseline mortality and
rate parameters, respectively. One difference between this
and previous implementations is that here we modelled natal
and immigrant out-migration conditioned on the out-migration
state oij = 0, 1, where i = 1,…, n and j = 1, 2 is the index for
natal or immigrant out-migration. The out-migration state has
Bernoulli probability. An individual with oij = 1 contributes to
the estimation of the gamma-distributed ages at out-migration.
For individuals with unknown state, the model samples the
out-migration state at every iteration, where the conditional
posterior for out-migration state incorporates the likelihood
that the individual died against the likelihood that they
out-migrated (see extended model description in electronic
supplementary material).

Following the implementation in Colchero et al. [31], we used
an agent-based model to estimate the priors for the out-migration
parameters, with the addition of priors for the probability of out-
migration. The agent-based model used empirical data on
known ages at natal dispersal and higher-order dispersal in male
baboons, as well as data on the number of study groups and the
number of surrounding non-study groups to which out-migrating
males could disperse, to estimate the priors for out-migration and
death for unknown-fate individuals.

Unlike previous implementations of the model [31,47],
our extension enables the inclusion of time-varying covariates for
survival, crucial for testing the effects of social bond strength and
social status on survival. The covariates change during the life-
course of most individuals. We standardized all covariates by sex
and age to remove systematic differences in social bond strength
and status among animals of different ages. For example, in
males, bond strength with females and social status tend to peak
in early adulthood and decline later in life [49] (electronic sup-
plementary material, figure S5). Accordingly, the covariate values
represent deviations from sex- and age-typical values of social
bond strength and status.

For the time-varying covariates, the hazard function is
given by

h(xjwx) ¼ m(x) ek�wx ,

where wx ∈ R3 is a vector of time-varying covariates at age x,
and κ ∈ R3 is a proportional hazards vector to be estimated.
The cumulative hazard is approximated as

H(xjW) �
Xx

t¼0

m(t) ek�wt ,

where W= [w0, w1,… ,wx] is a matrix of the time-varying
covariates for all observed ages. Then, the cumulative survival
function is given by

S(xjW) ¼ e�H(xjW),

while the probability density function of ages at death is

f (xjW) ¼ h(xjwx) S(xjW):

For all mortality parameters, including the proportional
hazards parameters, we used vague priors. We sampled all
parameters and unknown out-migration states using Metropolis-
Hastings [50,51] sampling within a Markov chain Monte Carlo
(MCMC). To assess convergence, we ran eight parallel chains
with 5000 iterations and an initial burn-in sequence of 1000, and
calculated potential scale reduction factor (R̂) [52].

(e) Data imputation
Data imputation was necessary because measurements of DSIF,
DSIM or proportional dominance rank were missing for some
individual-years of observation; for example, the covariate
values of immigrant adult males were unknown prior to their
entry into a study group (electronic supplementary material,
figure S6). Missing covariates were imputed randomly at each
iteration of the MCMC, for any missing covariate values between
age at maturity (five for females and seven for males) and the
individual’s oldest observed age. Specifically, for each of the
three covariates, we calculated the age- and sex-specific mean,
standard deviation, minimum and maximum values of the
observed covariates using the imputed ages/times of birth in
the current iteration of the MCMC. Next, new values for the miss-
ing covariates were randomly drawn from a truncated normal
distribution defined by the corresponding age- and sex-specific
means, standard deviations, minimums and maximums. For
example, if for a given iteration, age and proportional rank were
observed for 100 males, but missing for 50 males, we computed
the mean, standard deviation, minimum and maximum of the
100 observed values, and then imputed proportional rank for
the other 50 males by drawing values from a truncated normal
distribution with the corresponding parameters. For the few
cases (occurring in old age) in which all subjects (or all but a
single subject) had missing covariates for a given age and sex,
missing covariates were imputed randomly independently
of age. Figure 1 presents a workflow of the Bayesian model,
including the data imputation.

To verify that the results of the survival analysis were not
affected by this data imputation method—which we refer to as
the ‘full model’—we also applied three alternate methods of data
imputation and compared the results. These three alternative
approaches involved running the model with subsets of the data
that included complete information on social bond strength with
females (54 males, 184 females) or social status (75 males, 187
females), and filling data gaps using linear interpolation. We
describe these procedures in the electronic supplementarymaterial.
In addition, all results are reproducible from the R code and data
available in Dryad (https://doi.org/10.5061/dryad.kh189322b).

https://doi.org/10.5061/dryad.kh189322b
https://doi.org/10.5061/dryad.kh189322b
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3. Results
The model produced stable estimates of all parameters
(electronic supplementary material, figures S7 and S8; R̂
values in electronic supplementary material, table S1). This
result justified our use of these estimated trajectories of
survivorship to measure the relationship between survival
and social environments over the adult life course (electronic
supplementary material, figure S9). Furthermore, all data
imputation methods produced similar patterns for the effects
of DSIM, DSIF and dominance rank on survival (electronic
supplementary material, figure S10).

Social bond strength strongly predicted survival for adult
baboons of both sexes (figures 2 and 3; electronic supple-
mentary material, table S1). For males, an increase of one
standard deviation in DSIF translated to a reduction of
approximately 28% in the mortality hazard for any given
age. For females, increases of one standard deviation in
DSIF and DSIM were associated with stronger reductions
than in males: 37% and 31% reductions in mortality hazard
for any given age.

Higher social status in adult male baboons was associated
with a reduction in survival, although the 95% (but not the
68%) credible interval included zero (figures 2 and 3; elec-
tronic supplementary material, table S1). For males, an
increase of one standard deviation in proportional domi-
nance rank for their age was associated with an increase of
approximately 13% in the mortality hazard for any given
age. We saw no relationship between female social status
and survival (figure 2).
4. Discussion
(a) Social bonds and sex-specific survival
Using novel methods for analyzing datasets with missing and
uncertain data, we found that both male and female baboons
who had stronger social bonds had improved survival. Male
baboons with strong social bonds to females experienced a
28% reduction in the mortality hazard for any given age com-
pared to males with weak social bonds to females. This is the
first evidence in a wild non-human primate that males, like
females, show a strong link between social bond strength and
survival over the natural lifespan. This finding brings new
understanding to the potential adaptive significance of hetero-
sexual social bonds for male baboons, especially in light of
the absence of enduring same-sex social bonds among male
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baboons in our population. The benefits of ‘friendships’ for
male baboons and other social primates have previously
been interpreted in terms of male reproductive advantages,
such as securing future mating opportunities with female
friends and protecting the male’s offspring from infanticide
and harassment [53–55]. Our findings demonstrate that an
additional potential benefit of ‘friendships’ with females is
extended lifespan.

Lifespan is no less important for male fitness than for
female fitness. Indeed, for long-lived species, variation in life-
span has a bigger effect on fitness than variation in fertility,
even in societies in which male mating is highly competitive
and is concentrated during the prime years of life [24,25]. The
common misconception that lifespan ‘matters less’ for males
in competitive societies may stem from the idea that most of
the variation in lifespan is accounted for by males who live
past the prime reproductive age; this is incorrect. For
example, in the Amboseli baboons, half of males who reach
adulthood die during the prime reproductive years of 8–13
years of age [56]. The same is true for many other species
with competitive mating (e.g. 57,58 for multiple species of
ungulates). Thus, an extension in lifespan for male primates
will often mean an increase in survival through their prime
reproductive years, as well as an enabling of reproduction
into old age. For this reason, understanding sources of
variation in male lifespan provides us with essential insight
into traits that are likely to be under selection.

Our findings for adult female survival add to a growing
body of evidence that links social bonds with female longevity
in various populations of non-human primates [5–7,9,11]. They
also recapitulate previous work in our study population, which
used a different metric of social bonds called ‘social connected-
ness’, a measure of normalized grooming frequency with all
partners of a given sex [6]. By focusing on the strength of a
female’s most important social bonds (DSIF) in this study, we
employ a metric that more closely parallels measures used in
human studies [2], and one that is similar to several other non-
human primate studies [5,9,11]. In this study, social bonds with
females (DSIF) were a stronger predictor of female survival than
social bonds with males (DSIM), whereas in our previous study
the stronger predictor was social connectedness with males [6].
In spite of these differences—which might be driven by the
use of a different metric—the directions of the effects were
consistent and had strong empirical support in both studies.

What mechanisms underlie the links between social bonds
and survival [59,60], and do those mechanisms differ between
the sexes? In female cercopithecines, same-sex social bonds
may benefit females by increasing tolerance during compe-
tition over limited resources, facilitating the acquisition of
high dominance rank, and strengthening alliances [59,60].
Opposite-sex social bonds may benefit females by providing
protection against harassment, predation and infanticide
[55,61]. By contrast, much less attention has been paid tomech-
anisms by which opposite-sex social bonds enhance survival
for male primates. Grooming relationships with either sex
could provide direct health and survival benefits in the form
of reduced ectoparasite burden [62], improved vigilance for
predators [63], and environmental buffering or stability [64,65].

Through such mechanisms, both sexes may experience
positive effects of affiliative behaviour on neuroendocrine sig-
nalling [66]. In female rhesus macaques (Macaca mulatta),
grooming interactions lead to reduced heart rate [67]; in
female chacma baboons (Papio ursinus) and female rhesus
macaques, aspects of social bonds predict lower levels of gluco-
corticoid metabolites in faeces, indicating reduced HPA axis
activation in response to stressors [68–70]; and in eastern chim-
panzees (Pan troglodytes schweinfurthii) of both sexes, social
support from strongly bonded partners reduces levels of urin-
ary glucocorticoids [71]. Furthermore, male barbary macaques
that form close ‘friendships’with other males show attenuated
patterns of glucocorticoid secretion, suggesting that they are
buffered against social and environmental stressors [72].
While none of these studies focused specifically on health or
survival benefits that males may gain from forming bonds
with females, they suggest that reduction of HPA axis activity
may be a proximate mechanism that connects greater social
bonds with improved health and survival outcomes, because
chronically elevated glucocorticoids have been associated
with a wide range of pathologies in both humans and other
animals [73–76].

Importantly, a simple correlation, rather than a causal
relationship, cannot be ruled out. Healthier individuals, in
better condition, may be more likely to live long lives, more
likely to maintain strong social bonds, and more likely to
achieve high social status. In this scenario, longer lifespans are
not a direct benefit of social bonds, but instead social bonds
and longer lifespans both flow from better physical condition.
Future analyses could make progress on this question by
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using longer-term or time-lagged measures of sociality to pre-
dict survival. However, in human studies, the evidence for a
direct causal effect of social bonds on survival is considered
strong, although causality is difficult to establish unambigu-
ously [2]. Causal inference modelling, an approach that has
attracted growing interest in human population studies, can
provide powerful insights into this problem, and represents a
strong future direction for studies in natural populations.

(b) Social status and sex-specific survival
Our findings provide new insights into sex differences in the
relationship between social status and lifespan. In humans,
the powerful and remarkably consistent link between socioeco-
nomic status and lifespan in both sexes is well established [3,4].
Many social mammals also compete for high social status,
but most research in this area has focused on reproductive
advantages associated with high social status. The relatively
few studies that have examined the relationship between
social status and survival in non-human primates paint a less
straightforward picture than in humans [22]. Among female
primates, high social status is associatedwith a survival advan-
tage in some populations of macaques and baboons [5,12,13]
but not in other primates [6,9,26,27]. As in a previous study
with this population [6], we found no direct relationship
between social status and survival in female baboons. The evol-
ution of competition for high social status among female
baboons is therefore likely to be determined by the nutritional
and reproductive advantages of high social status [77] rather
than by variation in survival. However, female social status
may have an indirect effect on survival because a females’
social bonds with males are predicted by female dominance
rank, with higher ranking females having greater ‘social
connectedness’ to males [6].

In contrast to studies in humans, we found that males who
maintain higher social status for their age tend to have shorter
lifespans, although the evidence was weaker than for the
relationship between social bonds and survival. Male baboons
compete intensely to attain high social status, and high status
confers large reproductive advantages on males [49]. Thus,
our results point to a possible trade-off between lifespan and
reproductive success in male baboons that may shape the
evolution of male–male competition for social status. Several
other lines of evidence support such a tradeoff in male
baboons. First, the highest-ranking male baboons in a social
group have elevated levels of both testosterone and glucocorti-
coids [78], both of which have immunosuppressive effects that
can compromise health and survival, but may be critical for
mediating reproduction and responding to social challenges
in male primates [79,80]. Second, high social status is asso-
ciated with faster epigenetic ageing in male baboons in
Amboseli [81]. Third, studies of gene expression indicate that
high-ranking males in Amboseli show increased expression
of inflammation-related genes relative to low-ranking males,
suggesting that theymay disproportionately incur costs associ-
ated with higher rates or intensities of acute inflammatory
responses [82]. In humans, both sexes show gradients in
health related to social status, but some evidence suggests
that men’s health may be more sensitive to differences in
social status than women’s health [83]. This pattern appears
to have echoes in our population of wild baboons, with the
important difference that social status does not directly predict
female survival. Further research on the physiological mechan-
isms that link social bonds and social status with health and
survival in baboons and other social mammals will be crucial
for illuminating the evolutionary significance of these parallels
and contrasts between baboons and humans.
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