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Abstract Biological aging is near-ubiquitous in 
the animal kingdom, but its timing and pace vary 
between individuals and over lifespans. Prospective, 
individual-based studies of wild animals—especially 
non-human primates—help identify the social and 
environmental drivers of this variation by indicating 
the conditions and exposure windows that affect aging 
processes. However, measuring individual biological 
age in wild primates is challenging because several 
of the most promising methods require invasive sam-
pling. Here, we leverage observational data on behav-
ior and physiology, collected non-invasively from 
319 wild female baboons across 2402 female-years 

of study, to develop a composite predictor of age: the 
non-invasive physiology and behavior (NPB) clock. 
We found that age predictions from the NPB clock 
explained 51% of the variation in females’ known 
ages. Further, deviations from the clock’s age predic-
tions predicted female survival: females predicted to 
be older than their known ages had higher adult mor-
tality. Finally, females who experienced harsh early-
life conditions were predicted to be about 6  months 
older than those who grew up in more benign con-
ditions. While the relationship between early adver-
sity and NPB age is noisy, this estimate translates to 
a predicted 2–3 year reduction in mean adult lifespan 
in our model. A constraint of our clock is that it is 
tailored to data collection approaches implemented in 
our study population. However, many of the clock’s 
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components have analogs in other populations, sug-
gesting that non-invasive data can provide broadly 
applicable insight into heterogeneity in biological age 
in natural populations.

Keywords Social determinants of health · 
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Animal model of aging · Longitudinal research

Introduction

For most species, aging is an inevitable biologi-
cal process. It is reflected in declining cellular, tis-
sue, and organ-level function with age, leading to 
an increased risk of disease and death [1, 2]. These 
processes exhibit considerable heterogeneity, with 
some individuals aging in different ways and at dif-
ferent rates than others [3, 4]. Measuring this varia-
tion and understanding its causes and consequences is 
essential to learn how evolution has shaped the aging 
process and to improve human health across the life 
course.

Recently, this line of research has been enriched 
by animal models studied in their natural habitats, 
where they experience species-typical environments 
and stressors (e.g., [5–7]). Such models have helped 
place human aging in an evolutionary context [8–16] 
and have shed light on the social and environmental 
drivers of aging [17–19]. The particular value of nat-
ural animal populations lies in their ability to provide 
prospective, longitudinal data on the major events 
and social conditions of individuals’ lives, from birth 
to death, allowing researchers to pinpoint the condi-
tions and exposure windows that most affect aging 
(e.g., [20–22]). Such studies have uncovered striking 
effects of early-life circumstances on adult health and 
mortality and tested the relative importance of early-
life vs adult conditions in predicting individual het-
erogeneity in biological age (e.g., [20, 23–25]).

However, while natural animal populations may 
illuminate drivers of biological aging, tools to 
measure biological age in these systems lag behind 
those for humans and laboratory animals [26, 27]. 
Ideally, such tools should reflect heterogeneity in 
biological age and predict adverse aging-related 
outcomes, including all-cause mortality. One set of 
tools that meets these criteria in humans and some 

animals are epigenetic or biomarker-based clocks 
(e.g., [3, 28, 29]). These “aging clocks” apply 
multidimensional data within predictive machine 
learning frameworks to predict an individual’s 
known chronological age, mortality risk, or pace of 
aging;  for clocks calibrated to predict chronologi-
cal age, deviations from these predictions are often 
used to infer individual variation in biological age 
[28–30]. However, the source material for these 
clocks—typically blood or other tissue samples—
can be difficult to collect in free-living animals. The 
need for invasive sample collection also constrains 
the ability to measure biological age in repeated 
samples across the life course (a requirement for 
researchers who want to measure heterogeneity in 
biological age within individual lifespans [31]).

One alternative is to develop clocks that leverage 
data that can be collected without invasive sampling 
(e.g., behavioral data, biomarkers from animal feces 
or urine). Such a clock would share some similari-
ties with visual assessments of age (e.g., [32, 33]) and 
frailty indices developed for humans, which center 
on physical functioning and the ability to perform 
activities of daily living (reviewed in [34]). Such 
indices remain among the most powerful measures of 
human mortality risk developed to date [35–38]. To 
our knowledge, no non-invasive age-predicting clocks 
have been built for non-human primates. However, 
frailty indices have been developed for primates and 
rodent models, and some have been used to create 
clocks that predict chronological age and life expec-
tancy (although they often incorporate invasive meas-
ures: [26, 39–42]).

Here, we use supervised machine learning to cre-
ate a composite age predictor in wild female baboons: 
the “non-invasive physiology and behavior age-pre-
dicting clock” (the NPB clock), based solely on data 
and samples that were collected non-invasively. To do 
so, we use longitudinal behavioral, demographic, and 
physiological data collected by the Amboseli Baboon 
Research Project (ABRP)—a 52-year longitudi-
nal study of baboons in the Amboseli ecosystem in 
Kenya [43]. Baboons are highly social, terrestrial pri-
mates that experience a wide range of natural social 
and ecological stressors. Like humans, adult mortal-
ity in baboons is strongly predicted by harsh early-
life conditions and social isolation in adulthood [44, 
45]. Unlike many human population studies, these 
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and other potential socio-environmental predictors of 
biological age can be measured prospectively, in real 
time, and longitudinally across the life course [46].

Before building our age-predicting clock, we 
began by testing for age associations in 78 non-inva-
sively measured traits from the ABRP’s long-term 
monitoring data. We then used 49 of these traits 
(those that were age-associated) to construct the NPB 
age-predicting clock by evaluating the performance 
of three machine learning methods. Next, we used 
age predictions from the NPB clock to test whether 
(i) individuals whose age predictions are older than 
their known ages exhibit higher mortality than those 
who are predicted to be young-for-age and (ii) socio-
environmental conditions in early life and adulthood, 
including early-life adversity, are linked to old-for-age 
clock predictions in adulthood [45, 47, 48]. We found 
that variation in NPB clock predictions is positively 
correlated with mortality risk, and early-life adversity 
is linked to old-for-age NPB clock age predictions. 
Finally, we discuss our results as they relate to other 
age-predicting clocks for the Amboseli population, 
other animal models, and humans.

Methods

Study subjects and longitudinal data on female traits

Our subjects were 319 wild adult female baboons 
living in 14 distinct social groups studied by the 
Amboseli Baboon Research Project from Septem-
ber 1975 to September 2021 (ABRP; [43]). These 
groups were the product of group fissions and fusions 
from two original groups, first studied in 1971 and 
1981 (no more than six groups were studied at any 
given time). Members of this population are hybrids 
between yellow and anubis baboons (Papio cyno-
cephalus and P. anubis), with majority yellow baboon 
ancestry [49–51]. We focused on female baboons 
because male postnatal dispersal creates observa-
tion gaps for males across adulthood. Female age 
was known to within a few days’ error for 295 of 
the females in our data set, and for the remaining 24 
females (7.5%), age was known to within 3 months’ 
error. All subjects were > 4  years old, a cutoff that 
corresponds to approximately the earliest age of 
female sexual maturity in this population (median age 
at menarche in Amboseli = 4.5 years [52]).

All ABRP study animals are visually identifiable 
by trained observers who monitor each study group 
two to four times per week, year-round. During each 
monitoring visit, observers collect many different 
types of data, including information on individual 
activity budgets, social interactions, offspring care, 
illnesses and injuries, and reproductive states [53]. 
They also collect non-invasive fecal samples from 
known animals, which are used to quantify individual 
parasite loads and steroid hormone levels. For most 
subjects (256 of 319 females), we also had data on six 
early-life conditions that cumulatively, and in some 
cases individually, predict mortality in this popula-
tion [45]: (1) maternal death before 4 years of age; (2) 
the presence of a close-in-age younger sibling, which 
may divert maternal resources; (3) drought in the first 
year of life; (4) maternal social isolation in the first 
2  years of life; (5) low maternal social dominance 
rank at birth; and (6) large group size at birth, which 
is linked to elevated resource competition [45]. See 
the Supplementary Information for details on how 
these variables were measured.

ABRP research is approved by the Institutional 
Animal Care and Use Committees at Duke Univer-
sity and the University of Notre Dame and the Ethics 
Council of the Max Planck Society and adheres to the 
laws and guidelines of the United States, Germany, 
and Kenya.

Testing which traits change with female age

Before building a composite age-predicting clock, we 
first identified 78 individual traits from the ABRP’s 
long-term monitoring data that could plausibly 
change with female age. We then tested each trait’s 
linear and quadratic (i.e., curvilinear) relationships 
with female age. Data on these 78 traits were col-
lected by the ABRP between 1975 and 2021 for a 
range of 7 to 46  years (some data sets started after 
1975 and one ended before 2021).

We grouped the 78 traits into ten categories 
(Table  S1). Category 1 (activity budget, 18 traits) 
included the percentage of time females spent in basic 
activities in a given year of life (birthday to birth-
day), including resting, walking, feeding, grooming, 
or being groomed. We also considered the percentage 
of time females were observed with no groupmates 
in close spatial proximity, partitioned depending on 
whether they had a dependent infant, as having an 
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infant is an important determinant of female activity 
and neighbors. Category 2 (endocrine measures, 4 
traits) focused on concentrations of hormone metabo-
lites in individual fecal samples. Category 3 (illness 
and injury, 7 traits) included the incidence of observ-
able cases of illnesses and injuries in a given year of 
life. Category 4 (parasites, 2 traits) measured para-
site burdens in individual fecal samples. Category 5 
(reproduction, 5 traits) focused on reproductive varia-
bles, such as the duration of reproductive phases (e.g., 
cycling, pregnancy, postpartum amenorrhea) in days 
and the incidences of fetal loss and offspring survival 
in a given year of life. Category 6 (maternal care, 7 
traits) included measures of the quality of care the 
focal females provided to their infants, contingent on 
having an infant, as assessed based on the percentage 
of time spent carrying, grooming, and nursing infants 
in a given year of life. Category 7 (social integration, 
18 traits) included aggregate measures of social inte-
gration with adult males and other adult females in 
a given year of life. Category 8 (dyadic sociality, 4 
traits) captured the strength and reciprocity of dyadic 
social bonds with adult males and other adult females 
in a given year of life. Category 9 (agonism, 5 traits) 
included measures of a female’s relative number of 
agonistic interactions in a given year of life, com-
pared to other females living in the population at the 
same time. Finally, Category 10 (social dominance 
rank, 8 traits) included several measures of social 
dominance rank and change across adulthood. See 
Table S1 for a list and description of all the traits in 
each category and the Supplementary Information for 
details on how these traits were measured.

We began by testing which of the 78 traits exhib-
ited linear or curvilinear relationships with female 
age using a two-part modeling strategy. First, before 
modeling our primary variable of interest (female 
age), we built initial models to determine which addi-
tional covariates should be included in models of 
each of the 78 traits. These initial models included 
all fixed and random effects known or suspected to 
explain variation in the trait from previous analyses 
in the Amboseli population. When no prior analyses 
of the trait had been conducted, we modeled the same 
variables used for the most similar trait (see Table S2 
for definitions of the variables). The best-fitting fixed 
and random effects for these initial models were iden-
tified using the dredge function in the MuMIn pack-
age [54]. We chose models that minimized AIC;  if 

multiple models had AIC values within two units, we 
selected the model with the lowest degrees of free-
dom (see Table S2). Second, we added linear or quad-
ratic terms for female age to the best-supported initial 
model and tested if either or both of these terms were 
statistically significant (alpha = 0.05). Together, these 
two modeling steps revealed 49 traits that had signifi-
cant linear or quadratic associations with female age 
(at alpha ≤ 0.05). All statistical analyses were con-
ducted in R, version 4.0.3 [55, 56].

Most of the 78 traits were continuous variables 
(N = 66), while a minority were categorical variables 
with either two (N = 7) or three levels (N = 5). The 66 
continuous traits were centered, standardized, and 
modeled using Gaussian error distributions using the 
lmer function from the lme4 package in R [57]. For 
categorical traits with two levels (N = 7), we created a 
generalized linear mixed model with a binomial error 
distribution using the glmer function also from lme4. 
For categorical variables with three levels (N = 5, 
including active rank change, rank relative to daugh-
ters, rank relative to mother, pregnancy outcome, and 
offspring survival), we created a multinomial model 
using the brm function from the brms package [58]. 
See the column labeled “model type” in Table S3 for 
correspondence between each trait and model type.

Preparing data for the non-invasive physiology and 
behavior (NPB) clock

Following Schultz et  al. [26], we used the 49 traits 
that exhibited significant linear or curvilinear asso-
ciations with age to construct a supervised machine 
learning-based age predictor, the NPB clock. Sub-
setting to age-associated traits is not a requirement of 
creating an age-predicting clock, but this form of fea-
ture selection is common [26, 30] and pre-selecting 
variables reduced the number of traits for which we 
had to impute missing data (described below). Most 
of our traits were measured annually for each female 
in each year of life (e.g., all traits under activity budg-
ets, illness and injury, maternal care, social integra-
tion, dyadic sociality, agonism, and social dominance 
rank, and some traits under reproduction). For hor-
mone and parasite measures, which were measured 
on the level of individual samples, we extracted the 
residual values for each sample correcting for key 
covariates (described above) and averaged these 
residuals within a given year of life. For the remaining 
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female reproductive traits (e.g., the duration of preg-
nancy or ovarian cycling), we used female age at the 
start of the year in which the trait was measured.

The final data frame contained data on the 49 
traits for 319 females across 2402  years of adult 
life (Fig.  S1; mean = 7.53  years of observations per 
female; female chronological age ranged from 4 
to 27  years). This data set excluded female-years in 
which the female was observed for < 60  days and 
female-years in which data on ≥ 65% of the traits 
(i.e., ≥ 32 of the 49 traits) were missing (Table S4). As 
a result, 26% of the cells in this data set were missing 
an observed value and required imputation (Fig. S1; 
note that a more conservative threshold of missing-
ness—where years with ≥ 36% of traits missing 
[i.e., ≥ 18 of 49] were excluded—had little effect on 
clock age predictions; Fig. S2). Imputation occurred 
in two phases. First, if data were missing for a trait 
in a given year of life, for a given female, but infor-
mation for that trait was available for that female in 
either the year immediately before or after, we extrap-
olated the observed value to the missing year. If infor-
mation was available for both the year immediately 
before and after the missing value, we set the missing 
value to the mean of these two values for continuous 
variables. For non-continuous variables, we randomly 
chose a trait value from the year before or year after 
the missing year. We adopted this approach based on 
the assumption that aging is typically a gradual pro-
cess, and hence, an individual’s traits in 1  year are 
likely predictive of trait values in the previous or next 
year. This backward- and forward-filling approach 
provided values for 10% of female-trait-years.

Second, for all other missing data (16% of female-
trait-years), we used predictive mean matching to 
females’ annual values using the aregImpute function 
from the Hmisc package [59]. Importantly, creating 
the age-predicting clock itself (see below) required us 
to split our data into “training” and “test” sets to eval-
uate generalization error. To avoid leaking informa-
tion between these data sets, we split the data set into 
training and test sets before performing predictive 
mean matching. Specifically, we created five train-
ing data sets that contained 80% of the data and five 
corresponding test data sets that each contained the 
remaining 20% of the data. Observations from each 
individual were evenly distributed across the five test 
data sets, such that a given individual might appear 
in its own training set. We then used the aregImpute 

function to impute the missing data in each training 
and test data set separately. Predictive mean match-
ing uses a weighted probability draw to select among 
a set of predicted values calculated for the miss-
ing data point’s “closest neighbors” (i.e., other rows 
in the data frame that have similar values for other 
predictor variables [59]). Female age is not included 
in this data frame and is not considered part of the 
predictive mean matching process. This process was 
repeated for each piece of missing data. We repeated 
the imputation process five times for each piece of 
missing data in each training and test set, producing 
five imputations per set (i.e., 25 total pairs of training-
test sets, representing five training-test splits and five 
imputation procedures per split).

Building the NPB age-predicting clock

We used the train function within the caret package 
to build the NPB age-predicting clock using ran-
dom forest regression (see Supplementary Informa-
tion for comparisons against two alternatives, elas-
tic net regression and Gaussian process regression; 
[60]). We set the number of trees (ntree) to 2000 and 
defined the optimal number of variables to randomly 
sample as candidates at each tree (mtry) as the value 
that maximized R2 between predicted and known age 
across all samples in the training set. The predictor 
variables were the 49 centered and standardized age-
associated traits measured annually for each female, 
and the response variable was each female’s known 
chronological age. The five imputation sets (described 
above) were used to predict each female’s age five 
times, which were averaged to produce her final age 
prediction. We assessed performance by evaluating 
how much variance in predicted age was explained 
by known chronological age (via R2) and the median 
error in the predicted age estimates for all female-
years. To understand if females were consistently pre-
dicted to be younger or older than their known ages, 
we calculated the repeatability of “relative NPB age” 
as the residuals of a linear model regressing predicted 
against known age. Relative NPB age represents how 
much older or younger an individual was predicted to 
be, on average, compared to her true age, with posi-
tive values indicating females who were predicted to 
be older for their known age and negative values indi-
cating females who were predicted to be younger than 
their known age.
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In addition to the main NPB age-predicting clock, 
we also created a variant clock (“NPB-restricted”) 
that excluded 17 traits already known to explain vari-
ation in female mortality in the Amboseli baboons: 
fecal glucocorticoid concentrations (one of the endo-
crine traits in category 2), percent of time being 
groomed (one of the activity budget traits in category 
1), and all traits under social integration and dyadic 
sociality (all traits in categories 7 and 8; Table  S1; 
[44, 61, 62]). The NPB-restricted clock also excluded 
the incidence of puncture wounds (one of the illness 
and injury traits in category 3) because the loss of the 
other variables prevented us from imputing this trait 
(this trait also had low importance in the main NPB 
clock). NPB-restricted was calibrated using the same 
steps described above.

Statistical analyses on NPB clock predictions

Clocks that measure biological age should ideally pre-
dict aging-related outcomes, such as all-cause mortal-
ity, beyond the accuracy possible from chronological 
age alone. To test this possibility, we created a Cox 
proportional hazards model using the survival pack-
age in R [63]. The predictor variable for this model 
was lifetime relative NPB age, calculated as the aver-
age of all of a female’s relative NPB age estimates 
across adulthood (relative NPB ages are the residuals 
of a linear model regressing predicted against known 
age). The data set included 319 females with 162 
deaths and 157 right-censored individuals who were 
still alive at the time of analysis or who were dropped 
from regular observations prior to death.

Because fluctuations in biological age across adult-
hood might also predict mortality risk within a given 
year, we also created a time-varying Cox proportional 
hazards model to test if females who looked old-for-
age in a given year of life experienced higher mor-
tality risk in that year. The predictor variable in this 
model was each female’s annual measure of relative 
NPB age. Female identity was included as a cluster-
ing variable. The data set for this analysis included 
2402 female-years from 319 females. The number of 
known deaths in this analysis was 138, lower than for 
the model using lifetime relative NPB age described 
above, because 24 females had < 60  days of data in 
their last year of life, so they were filtered out of the 
data set (see above).

We repeated our Cox proportional hazards mod-
els using age predictions from the NPB-restricted 
clock, which excluded traits known to predict mor-
tality (discussed above). We ran both a “lifetime” 
version of the model which used each female’s 
average relative NPB-restricted age as the sole 
predictor variable and a time-varying version that 
included each female’s annual measure of relative 
NPB-restricted age. As above, female identity was 
included as a clustering variable. Sample sizes were 
the same as the two parallel analyses for the main 
NPB clock, described above.

We next tested our expectation that early-life 
adversity increases relative NPB age. To do so, we 
created two linear mixed models using the lme4 
package in R [57]. In both models, the response 
variable was each female’s delta age  (AgeΔ) in a 
given year of life, defined as the predicted age from 
the NPB clock minus known chronological age 
in years. Because this variable is correlated with 
known age, we also included known chronological 
age as a fixed effect in the model. The two models 
differed in whether each of the six sources of adver-
sity was modeled (1) independently in a multivari-
able framework or (2) cumulatively using an index 
that summed the six sources of adversity a female 
could experience in the first four years of life. For 
the multivariable version, group size, maternal 
rank, and maternal social connectedness were mod-
eled as continuous variables, while maternal death, 
close-in-age sibling, and drought were modeled 
as binary variables. For the cumulative index, fol-
lowing [45], continuous variables were converted 
to binary variables and scored as present if the 
female’s experience fell in the most adverse quartile 
of the population distribution (see Supplementary 
Information). Both models also included three vari-
ables that captured the female’s current social and 
environmental conditions in a given year of life: (i) 
average proportional dominance rank in that year, 
(ii) average number of adult females in her social 
group in that year as a measure of social density and 
resource competition, and (iii) yearly rainfall anom-
aly, which represents the relative amount of rainfall 
in that year compared to all other years throughout 
the history of the ABRP project (see Supplemen-
tary Information). Individual identity was mod-
eled as a random effect in both models. The sample 
sizes for these early adversity models were smaller 
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because we were missing information on early-life 
experiences for some females (N = 256 females with 
108 known deaths for the lifetime model; N = 256 
females over 1867 total years with 92 known deaths 
for the annual model).

Finally, we tested whether relative NPB age pre-
dicted female mortality, controlling for exposure to 
early-life adversity. The lifetime and time-varying 
versions of these models were run using the same pro-
cedures described above. Our analysis was conducted 
on a subset of the full data set (N = 256 females with 
1867 female-years of observation).

Results

Many physiological and behavioral traits change with 
female age

We found that 63% (49 of 78) of female traits exhib-
ited significant linear or quadratic relationships with 
female age (Fig. 1; Table S3). The traits most strongly 
associated with age were for measures of social domi-
nance rank, reproduction, maternal care, and social 
integration (Fig. S3; Fig. S4; Table S3). In terms of 
social dominance rank, older females were more 
likely to outrank their mother, be outranked by an 
adult daughter, and exhibit an “active” fall in rank 
(i.e., a change in rank not solely due to demographic 
events like a change in the number of females in the 
hierarchy; Fig. S3; Table S3). In terms of reproduc-
tion and maternal care, young and old females expe-
rienced longer periods of ovarian cycling before con-
ceiving than middle-aged females (Fig. S3; Table S3). 
Young and old mothers also had the lowest offspring 
survival, and in the analysis of pregnancy outcomes, 
older females were more likely to experience fetal 
loss or stillbirth than younger females (Fig.  S3; 
Table  S3). Young and old mothers spent the most 
time physically supporting and nursing their infants 
(Fig. S3; Table S3). In terms of sociality, old females 
were less likely to initiate and receive grooming 
with other females. They also had the fewest distinct 
grooming partners, had the lowest eigenvector cen-
trality within their group’s grooming network, spent 
less time grooming, and spent more time without a 
neighbor within 3 m (Fig. S3; Table S3).

Several traits were not associated with age. Age 
did not explain several components of female activity 

budgets, including the percentage of time females 
spent feeding, walking, or standing (Table  S3). Age 
was also not associated with the strength of female 
relationships with adult males, including the aggre-
gate strength of grooming relationships with all adult 
males in the group (SCI-M) and the strength of dyadic 
grooming relationships with males (DSI-M). Female 
age also did not explain the incidence of observable 
signs of illness (with the exception of parasite rich-
ness and whipworm burdens).

The NPB clock predicts individual age in wild female 
baboons

Our NPB clock explained 51% of the variance in 
females’ known ages (Fig.  2A) and had moderate 
repeatability of relative NPB age (20.6%; Fig.  2B; 
Table S5). The age predictions were compressed rela-
tive to the 1:1 line, systematically over-predicting the 
ages of young individuals and under-predicting the 
ages of old individuals (Fig. 2; Fig. S5). The five traits 
with the highest importance to the NPB clock were a 
female’s social rank relative to her daughters and her 
mother, the duration of ovarian cycling she exhib-
ited between pregnancies, the percentage of time she 
spent with no neighbors, and her social connectedness 
to other adult females (Fig.  S6). Compared to other 
age predictors in Amboseli, the NPB clock produced 
more accurate age estimates than a microbiome clock, 
early and late-aged body mass index (BMI), differen-
tial white blood cell counts from blood smears, and 
blood cell composition by flow cytometry (Fig.  S7; 
[20]). However, the NPB clock was less accurate than 
a DNA methylation-based epigenetic clock (R2 = 0.60 
in females, median error = 1.62  years) and dentine 
exposure (R2 = 0.85, median error = 1.62 years; [20]).

Older biological age in the NPB clock predicts adult 
female survival

Females reliably predicted to be older than their 
true chronological age (Fig.  2B) might also exhibit 
higher mortality. In support of this possibility, life-
time relative NPB age predicted adult female survival 
(Fig.  3A; hazard ratio = 1.31; 95% CI = 1.09–1.58; 
P = 0.004; N = 319). This effect was driven by females 
in the oldest quartile of NPB age predictions, whose 
relative NPB ages were, on average, > 0.6 years older 
than their known ages. These females led lives that 
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Fig. 1  Forty-nine traits exhibited significant linear or curvilin-
ear relationships with female age. A–F Standardized values of 
each of the 49 traits that had statistically significant relation-
ships with age are shown on the y-axis, as a function of female 
age in years on the x-axis (coefficients for linear and quadratic 
relationships with female age for each trait are in Table S3; see 
Figs. S3 and S4 for visualizations of relationships for each trait 
separately). Traits are grouped by the nature of their relation-
ship with age: A curvilinear convex, B linear decreasing, C lin-
ear increasing, D curvilinear plateauing, E curvilinear ascend-
ing, and F curvilinear concave. Colors indicate the type of trait 
being modeled (Table S1). For continuous variables, we plot-
ted predicted fits based on the linear and quadratic age terms 
from the best-fitting linear models. For categorical variables, 
the figure shows quadratic fits to the raw data for visualiza-

tion purposes only; our actual statistical models were based on 
binomial or multinomial generalized linear models (Table S3). 
G A series of heatmaps of the linear and quadratic coefficients 
for the 49 traits grouped into continuous traits with Gaussian 
error distributions and categorical traits modeled using bino-
mial or multinomial models. Colored dots correspond to the 
category of the trait being modeled (Table S1). Linear coeffi-
cients represent the predicted per-year change in the trait value 
in standard deviations (i.e., the slope). Quadratic coefficients 
represent the predicted change in slope over time, with positive 
coefficients representing concave or ascending slopes and neg-
ative coefficients representing convex or plateauing slopes. For 
continuous traits, the coefficients are extracted directly from 
the linear model. For the categorical traits, coefficients repre-
sent the log odds of each variable
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were typically 4  years shorter than females in the 
other quartiles of lifetime relative NPB age (Fig. 3A, 
pink lines), with median lifespans of 14.0 years (95% 
CI = 12.1–18.5). Our results also support the idea 
that fluctuations in biological age across adulthood 
predict mortality risk. Indeed, our time-varying Cox 
proportional hazards model revealed that, for every 
year older a female’s relative NPB age was com-
pared to her known age, her risk of death in that year 
increased 12% relative to baseline for her age class 
(Fig.  3B; hazard ratio = 1.12; 95% CI = 1.01–1.24; 
P = 0.04, N = 2402; see [64] for age-specific hazards 
for females; median annual adult mortality for female 
baboons in Amboseli = 0.093; range = 0.034–1.00 
[64]).

These patterns were not driven by the inclu-
sion of mortality-associated traits in the NPB clock. 
The NPB-restricted clock was similarly successful 

in predicting female age as compared to the main 
NPB model (R2 = 0.49 vs R2 = 0.51; Fig.  S8). Pear-
son’s correlation between age predictions from the 
main NPB clock and the NPB-restricted clock was 
0.93. Further, lifetime relative age calculated from 
the NPB-restricted clock predicted female mortal-
ity with a similar effect size to relative age estimates 
from the main NPB clock (Fig. S9A vs Fig. 3A; life-
time relative age from NPB-restricted clock: haz-
ard ratio = 1.29; 95% CI = 1.09–1.52; P = 0.003; 
lifetime relative age from main NPB clock: hazard 
ratio = 1.31; 95% CI = 1.09–1.58; P = 0.004). Similar 
to the main NPB clock, annual relative age estimates 
from NPB-restricted clock also predicted survival 
(hazard ratio = 1.10; 95% CI = 1.01–1.19; N = 2402; 
P = 0.04; Fig. S9B).

Fig. 2  The NPB age-pre-
dicting clock in wild female 
baboons. A Predicted ages 
from the random forest 
NPB clock, plotted against 
known chronological age. 
The dashed line represents 
the 1:1 relationship between 
predicted and chronological 
age; the red line shows the 
fit of a linear model relating 
these two variables. Age 
predictions were com-
pressed relative to the 1:1 
line. B Relative NPB age 
for the 25 female baboons 
who had the most years of 
data in our data set (16–23 
age predictions per female; 
see Fig. S1 for numbers of 
years of data per female). 
Relative NPB age is 
calculated as the residuals 
of a linear model regress-
ing predicted against the 
female’s chronological age. 
The repeatability of relative 
NPB age was 20.6%
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Early-life adversity is linked to old-for-age NPB 
clock predictions

Harsh environmental conditions in adulthood were 
linked to old-for-age NPB clock estimates. Females 
who experienced more adverse conditions in early 
life had NPB clock age predictions that were slightly 
older-for-known age than females who experienced 
fewer sources of early-life adversity (Fig. 4; Table S6; 
β = 0.16; P = 0.01; N = 1867 female-years). Females 
who experienced three or more sources of adversity 
were predicted to be, on average, 0.48  years older-
for-age in a given year of adulthood compared to 
individuals who experienced no sources of early-life 
adversity. However, the relationship between early-
life experiences and NPB clock predictions was 
noisy, and no individual source of early-life adver-
sity significantly predicted NPB clock estimates 
(Fig. 4; Fig. S10; Table S7). Further, NPB clock age 

estimates were also not predicted by current social 
or environmental conditions, including the female’s 
proportional dominance rank, living in a large social 
group, or a year with low rainfall (Tables S6 and S7).

Relative NPB age did not predict female mortality 
after accounting for early-life experiences. Consistent 
with prior analyses [45, 47, 48], early-life adversity 
was a strong predictor of female longevity (Table S8; 
HR = 1.40; 95% CI = 1.11–1.75; P = 0.004). However, 
including early-life adversity as a covariate reduced 
the predictive power of relative NPB age on female 
mortality, perhaps because relative NPB age is mod-
estly correlated with early-life adversity. The hazard 
ratio for lifetime relative NPB age dropped from 1.31 
(95% CI = 1.09–1.58) to 1.21 (95% CI = 0.97–1.50), 
and the confidence interval for the hazard ratio over-
lapped one (P = 0.10; Table  S8). We found a simi-
lar attenuation of effect in a time-varying model of 
annual values of relative NPB age (Table S9).

Fig. 3  Relative NPB age predicts adult female survival. Plots 
show female survival as a function of A mean lifetime relative 
NPB age or B relative NPB age in each year of life. Colors rep-

resent quartiles of lifetime and annual NPB age estimates. Blue 
represents females who look the youngest for their age, and 
pink represents females who look oldest for their age
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Discussion

Observational data from wild primates may reflect 
individual differences in biological age. The NPB 
clock we created produced biologically relevant age 
predictions for female baboons: females predicted 
to be older than their known ages across adulthood 
tended to lead shorter lives than individuals whose 
age predictions were, on average, younger than their 
true ages. Age predictions in a single year of life 
also predicted mortality risk in that year, indicating 
that annual variation in biological age could con-
tribute to fluctuations in mortality risk across adult-
hood. Our NPB clock even predicted mortality when 
we removed features with previously known links to 
female longevity in our population [44, 61, 62], even 
though some of these features had high feature impor-
tance in the clock. Hence, biological age in female 
baboons is reflected in a variety of behavioral and 
physiological markers. Notably, the NPB clock did 
not predict mortality after controlling for early-life 
experiences. This result suggests that the effects of 
early adversity on biological age may partly explain 
the connection between NPB clock age predictions 
and female mortality.

Our clock expands the methodological approaches 
for measuring biological age in long-term studies of 
natural animal populations. Compared to the diversity 
of age-predicting clocks in the literature, our clock 
shares the most in common with “frailty clocks” 
developed for humans and laboratory mice that use 
measures of individual ability to perform activities 
of daily living [26, 36, 65]. Frailty indices are among 
the most powerful predictors of all-cause mortality in 
humans, and our work helps extend these findings to 
non-human animals [35–38], including populations 
for which fine-grained data are available on the social 
and environmental conditions individuals experi-
ence across life (e.g., [20, 21]). In the current study, 
we found that early-life adversity—one of the strong-
est environmental predictors of lifespan and mortal-
ity risk in this population [45, 47, 48]—was linked 
to old-for-age predictions in the NPB clock. Female 
baboons who experienced three or more sources 
of adversity in the first four years of life were pre-
dicted to be about 6  months (0.48  years) older than 
their true age in any year of adulthood compared to 
females who experienced no known sources of early-
life adversity. This effect size would translate to a loss 

Fig. 4  Early-life adversity is linked to an increase in NPB age 
predictions. This plot shows the residuals of NPB predicted 
age (y-axis) as a function of cumulative early-life adversity 
(x-axis), in a model controlling for chronological age, propor-
tional rank, rainfall anomaly, and group size. Individuals who 
experience three or more sources of adversity in early life 
appear, on average, 0.48 years older for age in any year of life 

compared to individuals who do not experience any sources of 
adversity in early life (Table S6; β = 0.16, P = 0.01, N = 1867). 
However, this relationship is noisy: many individuals match 
their age predictions, and some appear young-for-age (y-axis 
values < 0); similarly, some females who experienced little 
early-life adversity also appear old-for-age
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of 2–3 years of adult lifespan, given the relationship 
between NPB age and mortality we observed.

Our results join several previous studies in 
humans, using both frailty indices and epigenetic 
clocks, which find that individuals who experienced 
early-life adversity appear old-for-age in adulthood 
(e.g., [66–71]). Our results differ somewhat from two 
other age-predicting clocks created for the Amboseli 
baboon population. For instance, for female baboons, 
epigenetic age in a given year of adulthood was not 
predicted by either cumulative early-life adversity or 
current social dominance rank [20]. An unpublished 
age-predicting clock based on gut microbiome com-
position found weak and inconsistent effects of early-
life adversity on microbiome age, but in adulthood, 
females had old-for-age microbiome compositions in 
the dry season—a period linked to resource depriva-
tion. These two clocks and the NPB clock together 
suggest that different biological systems respond dif-
ferently to socio-environmental exposures and reflect 
different aspects of biological aging. For instance, 
non-invasive clocks that include several behavioral 
phenotypes, like the NPB clock, might be best for 
tracing longitudinal changes in biological age within 
individuals as they experience a variety of socio-
environmental challenges across life. Such clocks are 
probably best for measuring aspects of aging linked 
to tasks of daily living and changing social relation-
ships. By contrast, given the increased difficulty of 
collecting typically used sample types, epigenetic 
clocks might be better suited to cross-sectional ques-
tions that address mechanistic aspects of biological 
age within specific tissues and organs (e.g., blood, 
muscle, brain). These ideas are consistent with prior 
research in humans that suggests that different types 
of clocks—even those based on the same data type, 
but optimized to predict different outcomes (e.g., 
chronological age versus impending mortality versus 
the pace of aging)—are linked to different aspects of 
aging (e.g., [28, 37, 38, 72, 73]).

Interestingly, the most important feature in our 
age predictions was females’ social rank relative to 
their daughters: as age increases, the probability that 
a female ranks below one or more of her daughter(s) 
increased exponentially. Similarly, the third most 
important trait in the NPB clock is females’ social 
rank relative to their mothers: as age increases, the 
probability that a female will rank above her mother 
increases linearly. Baboon females in Amboseli 

follow nepotistic rank ordering, such that female 
offspring generally rank immediately below their 
mothers [74, 75]. However, they may eventually 
come to rank above their mother: in 34% of mother-
daughter pairs in Amboseli, the daughter ranked 
above her mother at some point in adulthood, and 
this switch was more likely to be observed for older 
mothers [75]. If mother-daughter rank changes 
occur because age-related physical declines lead 
mothers to either lose their competitive ability [76] 
or cede rank to their daughters in “consensual” rank 
reversals [77, 78], then these explanations may also 
explain the association between rank reversals and 
the NPB clock.

The duration of ovarian cycling before conceiv-
ing was also important to the NPB clock’s age pre-
dictions (Fig.  S6). In Amboseli, females cycle a 
median of nine times between menarche and their 
first pregnancy [79]. After their first pregnancy, they 
experience fewer ovarian cycles between pregnan-
cies, on average, and this number is relatively stable 
throughout prime adulthood (median of approxi-
mately four cycles; [80]). However, once they reach 
late adulthood (around 18 years of age), the number 
of cycles between pregnancies increases again as 
females undergo reproductive senescence [81].

While our clock illustrates the use of observa-
tional data to measure biological age in wild ani-
mals, it relies on many data sets that are either 
unique to the Amboseli baboon population or are 
collected using different methods across popula-
tions. Consequently, it cannot be directly extrapo-
lated to other non-human primate or mammal 
populations, and we cannot easily test the gener-
alizability of this specific clock across species and 
populations. Unfortunately, the lack of uniform 
methods across long-term studies of wild mammals 
likely makes a more universally applicable NPB 
clock impossible. Despite this limitation, the NPB 
clock serves as an example of how long-term, non-
invasive data can be used in research on compara-
tive aging.

In conclusion, physiological and behavioral traits 
measured across the life course can be used to predict 
age in a wild long-lived primate. This metric of bio-
logical age predicts lifespan and is, itself, predicted 
by the number of cumulative hardships that individu-
als experience in early life. Indices of biological age 
created with physiological and behavioral traits share 
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some similarities with visual assessments of aging 
and frailty indices, and a diversity of age-predicting 
clocks is likely to be important for measuring aging 
in different biological systems. Age-predicting clocks 
like ours offer opportunities to study aging non-inva-
sively and will be most useful for long-term animal 
studies that already have longitudinal data across 
individuals’ lifespans.
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