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INTRODUCTION

The purpose of this paper is to show that existing data on the sizes of
free-ranging troops of nonhuman primates are orderly in a way not previ-
ously recognized, and that stochastic models of theoretical populations
can account for much of the order.

Stochastic models can describe the fluctuations in size of theoretical
populations whose individuals are born, immigrate, and die or emigrate.
As such models have been developed, primarily during the last thirty
years, field biologists have been independently studying the behavior, com-
position, and size of natural primate troops.

This paper will summarize the assumptions and predictions of the
simplest birth-immigration-death-emigration (BIDE) model and compare
them with available information on free-ranging apes (gibbons, Hylobates),
Old World monkeys (black and white colobus, Colobus guereza; hanuman
langurs, Presbytis entellus; and baboons, Papio), and New World monkeys
(howlers, Alouatta palliata).

The suceess of the equilibrium state of the BIDE model in describing the
distribution of size of troops of these species will suggest that the model is
one approximation to the natural dynamics of primate troops. The only
available data on the actual gains and losses of individuals in one particular
baboon troop will suggest that further theoretical development is needed to
describe in detail the dynamics of troop size or that more data are needed,
or both.

The statistical tool used to assess the variability of the few available
vital statistics on baboons is the ‘‘jackknife,”’ a technique of enormous
versatility and power which seems to be new to biology. An appendix to
this paper describes the technique (though not its rationale) and its applica-
tion.

THE STOCHASTIC MODEL

The following review of the assumptions of the BIDE model and its pre-
dictions uses the notation of Bailey (1964, pp. 91-101), who proves the
assertions made. Several other expositions are available (Kendall 1949;
Bartlett 1955, 1960 ; Parzen 1962).
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Suppose a theoretical population contains X (¢) individuals at time ¢ = 0,
where X (f) is some nonnegative integer and ¢ is continuous. Suppose that
the chance of any individual in the population giving birth to a single
other individual in time A# is AAf and that all births are mutually inde-
pendent. Then the probability of a single birth from any of the X (?) indi-
viduals in the population is AX (¢)A¢. Suppose in addition that there is a
random stream of immigrants at a mean rate v which is independent of the
current size of the population. Thus the chance that the population size
increases by one in the interval At is the sum of the chances of increase due
to birth and immigration, namely, AX (¢)A¢ - vAt 4 o(At). Here o(.) is
any function such that o(At)/(At) approaches zero as At approaches zero;
0(.) may represent a different function each time it appears.

In addition, suppose that the chance for any individual of dying in the
interval A¢ is wAf, and that any individual’s chance of emigrating from
the population in A¢ is peAf. Then, again under the assumption of mutual
independence, the probability that the population will decrease by one in
time A¢ is proportional to the total size of the population X (¢). If the death
and emigration rates are combined into a single loss rate w =uy -+ M, the
chance of one loss due to death or emigration in A¢ is pX (¢)At -+ o (A?).
From the assumption that the chance of more than one birth, immigration,
or death or emigration in a short time interval At is o(At?), it follows that
the chance of no change in the population size in Af is equal to 1 — (A 4
w) X () At — vAt + o (At).

‘We suppose that a theoretical population is initially of size zero and is
started off by an immigrant. It may be shown that the average or expected
population size will grow infinitely in time unless the birth rate A is less
than the loss rate pu (Bailey 1964, p. 99). Since the collections of primate
troops I will review have presumably existed for a long time, yet are
assumed to have a distribution which is stable in time (barring catastrophic
influences) or which is approaching stability, we make the assumption that
A<

Then if birth, death or emigration, and immigration are all proceeding at
strictly positive rates, it may be shown that the probability pyz(%k) that
the theoretical population contains exactly % individuals after a long time ¢
is independent of time and the initial population size and is given by the
negative binomial distribution :

pNB(k):(r"*"l;;_'l)pqu:k:o:l;z;"'; (1)

where the parameters r, p, and ¢ =1 — p are related to the parameters of
the BIDE model by
r=v/hg=1—p=»Apn (2)

If the birth rate A is reduced to zero, so that the population is maintained
by a balance of immigration and death or emigration, then it may be shown
that the probability pp (k) that the population contains exactly % individuals
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after a long time ¢ is again independent of time and is given by the Poisson
distribution :

pp (k) =e—"m¥/k!, £=0,1,2,..., (3)
where the parameter m is related to the parameters of the BIDE model by
m=v/\. (4)

Another interpretation of this situation, where A =0, is that birth is
oceurring at a rate which is independent of the total size of the population
(aside from whatever immigration may or may not be occurring). Thus if
there were a fixed number of mothers in a theoretical population, regardless
of the number of males or children, then one would require A =0 and v
positive.

APPLYING THE MODEL

In the following applications, the theoretical population of the BIDE
model will be identified with a troop of primates. Two terminological
snares should be avoided.

First, the theoretical population in the BIDE model is called a ‘‘popula-
tion’’ because of the traditional statistical terminology for such models.
I am not identifying this theoretical population with what an ecologist
or population geneticist would call a (genetic or local) population, namely
‘‘the community of potentially interbreeding individuals at a given locality’’
(Mayr 1963, p. 136). The genetic population of howler monkeys on Barro
Colorado Island, for example, is a collection of troops, each of which will
be viewed as an independent replicate of a single theoretical population
described by the BIDE model. Under this interpretation, ‘‘immigration’’
in the BIDE model means only that an animal entered a troop. The entrant
may have shifted from another troop in the same genetic population, in
which case no immigration in the genetic sense has occurred, or may have
entered the troop and the genetic population from outside—immigration
in both senses. The distribution of sizes of troops, not of genetic popula-
tions, will be compared with the predicted distributions of the BIDE model.

Second, some authors call troops ‘‘social groups.”’ But these are differ-
ent from the social (sub)groups, sleeping (sub)groups, or coalitions within
a troop described by Struhsaker (1967), among others. Just as troops make
up a genetic population, social (sub)groups make up a troop, and individuals
make up a social (sub)group. Alleged troops such as those of colobus and
gibbon may have smaller average size than, say, vervet sleeping (sub)-
groups; but stochastic models for the size of social (sub)groups (Cohen
1969) should not be confused with models for troop size.

The BIDE model assumes that the rates A, u, and v are constant in time.
This assumption may be acceptable when size distributions are available at
only one time (as is the case for the gibbons, colobus, langurs, and baboons).
‘When observations repeated over a long period of time are available (as
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for the howlers), identifiable external influences (such as an epidemie)
will make it necessary to abandon the assumption.

This simple model also assumes that all of the parameters apply equally
and independently to all of the individuals in the theoretical population.
In a real troop not all individuals are equally likely to give birth or die, to
immigrate or emigrate; the rates of these processes are age- and sex-
dependent. However, if, for example, half of the individuals in the troop
have a true rate M’ = 2\ of giving birth to another individual, while the
remaining half of the population has a zero birth rate, then the birth rate
of the whole troop may be taken as the average (2A 4 0)/2 = A. This aver-
aging is permissible as long as the birth process does not interact with the
other death and migration processes, that is, as long as, for example,
neonates die and migrate at the same average rate as individuals of any
age. The simplifying assumption that on the average the constant param-
eters apply equally and independently to all individuals of the troops will
suffice until the data do not confirm the consequences of this assumption.

ESTIMATION AND GOODNESS OF FIT

In order to compare observed distributions of troop sizes with those
predicted by the BIDE model, it is necessary to estimate the parameters
of the theoretical distributions.

For the Poisson distribution, m was set equal to the observed mean x;
this is the ordinary maximum-likelihood estimate of m (‘‘ordinary’’ in the
sense of Kendall and Stuart 1961, chap. 30). For the Poisson distribution
in which the zero value was unobservable (called the O-truncated Poisson),
the ordinary maximum-likelihood estimate 7, of m was obtained from the
observed mean X by using the tables of Cohen (1960). For the Poisson
distribution in which both X (#) = 0 and X (f) = 1 were unobservable (the
0,1-truncated Poisson), the estimator my of m devised by Subrahmaniam
(1965) was used:

mi =% — 2f(2)/N, (5)

where f(%k) is the observed frequency of % counts (here f[0] = f[1] =0)
and N is the total number of observations. Subrahmaniam showed equation
(5) to be asymptotically nearly completely efficient for a wide range of
values of m. This unbiased estimator resulted in better fits to the data than
did the estimator proposed by Rider (1953), which I also tried.

For the negative binomial distribution in which zero values were un-
observable (referred to here as the truncated negative binomial distribu-
tion), the parameters were estimated by the method of Brass (1958):

p=x(1—f@1)/N)/s?, r= (px—f(1)/N)/(1—p), (6)

where s? is the sample variance.
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To decide how well the fitted distributions using these estimators describe
the observed distributions, it is necessary to attach probability values to the
usual X? statistic for goodness for fit,

X :}; (0() — E(3)/E(i),

where the observations have been lumped into K classes, ¢ runs over these
classes, and O(4) and E (¢) are the observed and expected frequencies in
each class, respectively. The use of expected class frequencies as small as
1 in the tails of Poisson and negative binomial distributions is justified by
Cochran (1954).

When ordinary maximum-likelihood estimators are used, as for the
Poisson and O-truncated Poisson, the distribution of X2 in equation (7) is
bounded between a x2  and a x?_, variable, where the subscript shows the
number of degrees of freedom. As K becomes large, the difference between
the two can be ignored (Kendall and Stuart 1961, p. 430). In these cases, if
a fit is not rejected assuming K — 2 degrees of freedom, it will certainly
not be rejected using K — 1 degrees of freedom; so it is only in cases of
marginal fits that the distribution of x2 | needs to be considered.

When estimators other than maximum likelihood or minimum %2 are
used, as for the 0,1-truncated Poisson and truncated negative binomial
distributions, it can only be said that X2 has a distribution with ‘‘more’’
degrees of freedom than K — ® — 1, where © is the number of parameters
estimated. Henece if a fit is accepted using the distribution of X2 g_p it
would also be accepted using the correet distribution. Cases only marginally
rejected (say, at the .05-.01 level) using K — ® — 1 degrees of freedom
remain doubtful.

‘When the number of observations in a frequency distribution is small, a
way of testing for deviations from the Poisson distribution which is more
powerful than fitting a theoretical distribution to the observed is to compare
the observed dispersion with the expected. According to the Poisson vari-
ance test devised by Fisher (see Cochran 1954), for large samples

. (N—1)s?
=—

x> (8)
should asymptotically have the distribution of va_l if the distribution from
which the independent observations came is Poisson. Similarly (Rao and
Chakravarti 1956), if #, is the maximum-likelihood estimate of the param-
eter of the O-truncated Poisson distribution, then for large samples

N —1) s? m
X2 = —(—-—)_, where Py = ——A—o———, (9)
(1—p1) % (e™ —1)

should also asymptotically have the distribution of x2_ .
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HOWLER MONKEYS

For the collection of howler monkey troops (Alouatta palliata) living on
Barro Colorado Island in the middle of the Panama Canal, extensive data
based on his own and others’ observations have been collected by Carpenter
(1962).

In 1932 and 1933 Carpenter attempted to census the size and composi-
tion by sex and maturity of all troops on the island (in primate studies
““maturity’’ usually means size and sexual development and may differ
from chronological age). In 1935 Carpenter censused a sample of 15
troops. In 1951, a few years after an epidemic (possibly yellow fever) had
killed a substantial part of the howler population, N. Collias and C. South-
wick attempted a complete census of the monkeys. Finally, in 1959, Car-
penter, Mason, and Southwick censused the entire island. The five size
distributions resulting from these counts, numbered in chronological order,
are presented in table 1.

Three fitted distributions are presented in table 2. The first shows that
the sum of all the observed distributions may be described by the truncated
negative binomial distribution. But examination of the means and variances
of the five observed distributions (bottom of table 1) shows that the 1951
census, after the epidemiec, differs grossly from the other four counts, which
are quite similar. Hence table 2 also presents a fit of the truncated negative
binomial distribution to the sum of the first, second, third, and fifth ob-
served counts and a separate fit of the truncated Poisson distribution to the
fourth (postepidemic) census. While the one-parameter truncated Poisson
distribution is sufficient to describe the postepidemic observations, it is not
sufficient for any of the other distributions. Except for the postepidemic
census of 1951, the variance of troop size was too large compared to the
mean troop size for the observations in each census separately to have come
from a truncated Poisson distribution, according to a one-tailed application
of the truncated Poisson variance test (equation [9]) at the .01 level.

The probability level attached to X2 for the pooled distributions in table 2
should be taken as a lower bound on the probability that a worse fit to the
predicted distribution would have occurred by chance, rather than as an
exact value. The probability value overstates the significance of any dis-
crepancy between observed and predicted distributions because the observa-
tions that go into the two pooled distributions I and II in table 2 are not
independent. The three counts made by Carpenter within three years are
especially nonindependent. The finding that the observed distributions can
be described by the theoretical in spite of this lack of independence means
that greater confidence can be attached to the agreement than the prob-
ability levels would suggest.

If the four nonepidemic counts are typical of the steady-state size distri-
bution of howler troops, and if the BIDE model is valid, then the estimated
parameters show that the ratio of the mean rate of immigration to the mean
birth rate per individual is approximately 7.05. Similarly, the ratio of the
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TABLE 1
FREQUENCY DISTRIBUTIONS OF SIZE OF HOwWLER TrooPs*

1932 1933 1935 1951 1959
Size 1) (2) 3) (4) ()
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x 17.304 17.464 18.200 7.967 18.500
s2 49.949 48.332 51.029 12.723 88.070

* Data are from Carpenter (1962).

mean birth rate to the mean loss (death plus emigration) rate is estimated
at 0.72.

An estimate of the mean birth rate per individual per year (which will
be lower than the mean birth rate per adult female) may be obtained by
finding the ratio (number of individuals in category ‘‘infant 1’’)/(total
number of other individuals in the troop) for each troop, as listed in
Carpenter (1962), and then averaging over all troops. I assume that
““‘infant 1’’ means an infant born in the last year. This calculation yields
the estimates )\,1932 = 00440, }\.1933 = 004:28, }.1959 = 004:75, and an average
weighted by the number of groups in each census, A = 0.0453 per individual
per year. But there is no obvious way to get independent estimates of the
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TABLE 2
SuMMED FREQUENCY DISTRIBUTIONS OF SizZE oF HOWLER TROOPS*
It II 111
(ALL 5 YEARS) (ALL Bur 1951) (1951)

Size Obs. Pred. Size Obs. Pred. Size Obs. Pred.
1-5 17 10.2 1-5 8 2.9 1-3 2 1.3
6-10 25 30.4 6-10 10 16.1 4 3 1.8

11-15 30 36.1 11-15 26 27.7 5 4 2.8

16-20 31 28.3 16-20 29 26.8 6 1 3.7

21-25 21 17.6 21-25 21 18.4 7 6 4.2

26-30 9 9.4 26-30 9 10.1 8 1 4.2

31-35 5 4.6 31-35 5 4.8 9 3 3.7

36-40 1 2.0 36-40 1 2.0 10 4 2.9

41— 1 1.4 41- 1 1.2 11 2 2.1
e .. v .. . 12 2 1.4

=13 2 1.9

X = 15.807 x = 17.945 = 7.967

82 = 69.437 $2 = 63.630 $2 = 12.723
p= 0.2276 p= 0.2820 my = 17.9572
7= 4.6590 = 7.0492

X2 = 8.233 X2 =12.437 X2 = 7.339

df = df = 6 df = 9

Pi= (.2,.3) P= (.05, .1) P= (5,.7)

* Data are from table 1.

t Obs. = observed; Pred. = predicted.

} In this and all subsequent tables P — the probability of a worse fit to the theoretical
distribution by chance alone.
immigration and loss rates in order to check the parameters of the fitted
distribution.

It is reassuring to find that if the counted 1932 population of 398 monkeys
grew at the estimated A ~ 4.5 percent for 27 years, it would number approxi-
mately 1,310 monkeys, well beyond the total of 814 monkeys observed in
1959. What is difficult to account for is the 23 percent increase in population
Carpenter reported between 1932 and 1933. It seems likely to me that part
of this increase should be attributed to censusing error. Carpenter’s guesses
that his 1932 total population estimate of 398 had a sampling error of =50
and that his 1933 estimate of 489 had a sampling error of =25 take account
of this possibility. (I thank Stuart Altmann for pointing this out.)

The epidemic before 1951 struck most heavily among the nonreproductive
infants and juveniles, according to the counts of Collias and Southwick.
Hence it is not surprising that shortly after the epidemic the size distribu-
tion appeared as if no births had taken place, only immigration to particular
troops (not to the island) contributing to increased size. From the observa-
tion that even the smallest troops had at least one adult male after the
epidemic, Carpenter (1962) infers that there must have been substantial
migration among troops after the epidemic. Since the epidemic left alive
relatively more reproductive females, it is perhaps also reasonable that the
average net rate of reported growth sustained by the population between
1951 and 1959 was 16 percent per year.

The observers of the howlers recorded (or estimated) the numbers of
animals in each troop in each of nine classes: males (adult), females (adult)
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without young, females with young, infants in three maturity classes, and
juveniles in three maturity classes (with no sex differentiation among in-
fants and juveniles). Each year the number of individuals in one of these
classes, such as ‘‘infant 1,”’ increases at a rate which does not depend on

TABLE 3
MEANS AND VARIANCES OF THE FREQUENCY DISTRIBUTIONS OF THE SIZE
OF MATURITY AND SEX CLASSES BY CENSUS*

CENSUS
1932 1933 1935 1951 1959
(N=23) (N=28) (N=15) (N=30) (N =44)

Males: t

MY v evnnennnenaneenes 2.52 2.80 3.12 0.38 3.18

X i 2.74 2.93 3.27 1.20 3.32

82 i 1.84 1.40 2.78 0.17 3.11
Females without youngt

2 4.70 3.36% 4.47 3.30 6.14%

82 i 4.49 6.02 5.98 2.08 13.14
Females with youngt

P 2.74 3.50 2.53 1.20 3.00

82 i 1.66 4.26 1.41 1.27 4.70
Infant 1:

2P 0.65 0.75 0.80 0.43 1.02

82 e 0.51 0.42 0.60 0.60 1.42
Infant 2:

F 1.17 1.57 1.60 0.37 1.50

82 e e 0.79 1.88 0.54¢ 0.38 2.30
Infant 3:

i i 1.30 1.18 0.13 0.40 0.45

82 i 2.04 1.93 0.12 0.32 0.58
Juvenile 1:

N 1.30 1.32 0.87 0.23 1.05

$2 e 1.22 0.89 0.98 0.19 1.30
Juvenile 2:

X e 1.83 1.82 1.40 0.23 0.98

82 e 2.06 1.19 1.40 0.19 1.51
Juvenile 3:

F 0.87 1.04 3.13 0.60 1.05

82 e 1.21 1.29 2.12 0.46 1.16

Mean troop size
(= sum of means) ....... 17.30 17.46 18.20 7.97 18.50

Variance of
troop size ............ 49.95 48.33 51.03 12.72 88.07

Sum of class
varianees ............. 15.82 19.28 15.93 5.56 29.22

* Males were compared with the O-truncated Poisson distribution; remaining classes
were compared with the full Poisson.

t Tested against a fitted distribution and against a variance test; remaining classes
were tested by variance test only.

t Fit to the Poisson distribution rejected at the .02 level by two-tailed truncated
Poisson variance test. but full distribution acceptably fitted by theoretical truncated
Poisson.
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the size of that class (but rather on the birth rate of the adult females) and
decreases (due to mortality or maturation into class ‘‘infant 2°’) at a rate
which does depend on the size of the class.

Hence each sex and maturity class separately could be identified with a
theoretical population behaving according to a BIDE process. The number
of individuals in each such class should then be described by the BIDE
process with immigration but no birth, that is, by the Poisson distribution.
This argument applies to all of the maturity and sex classes because none
of them contributes directly to its own increase (females with young do not
give birth to other females with young). Since no troop was observed with-
out an adult male, that class ought to be described by the truncated Poisson
distribution.

Table 3 gives the means and variances of each maturity and sex class in
each census and, for the adult males, the estimated parameter . Theoret-
ical distributions were fitted only to the adult classes. None of these fits was
rejected by X2 in equation (7) at the .01 level. The Poisson variance test
(equation [8]; truncated [equation (9)] for the males) was applied to
each of the 45 distributions in table 3. As shown there, two of the distribu-
tions were rejected at the .02 level by a two-tailed test which rejected
underdispersion at the .01 level and overdispersion at the .01 level. This is
only one more rejection than would be expected if each distribution were
known to be Poisson. Hence the assumption that the size of each maturity
and sex class is (truncated) Poisson-distributed cannot be rejected.

Within each howler troop the sizes of the classes are not independent. If
the class sizes were independent Poisson variates, then their sum (the troop
size) would also be a Poisson variate whose variance equalled the sum of the
class variances. The last two lines of table 3 show that for each census the
sum of the class variances was much less than the variance of troop size.
‘Where there is more of one class of howler, there is more of another.

GIBBONS

Counts of the sizes of troops of gibbons (genus Hylobates) have been
made in northern Thailand by Carpenter (1940) and in the Malayan
peninsula by Ellefson (1967). I am grateful to Dr. John O. Ellefson for
permission to use here his previously unpublished data (given in Ellefson
1966, 1967). Table 4 summarizes Carpenter’s counts of troops of H. lar and
Ellefson’s of H. lar and H. agilis. Each of these troops consists of a mother
and father and a variable number of children. Both Carpenter and Ellefson
reported seeing isolated males but excluded them from their data on troop
size.

Since the number of individuals able to give birth in each troop is con-
stant and equal to one, the troop size distribution ought to be predicted by
the BIDE model with A =0 and v positive, that is, by the (truncated)
Poisson distribution. Further, since there is presumably no immigration to
the troop once the parents have formed it, v describes only the birth rate,
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TABLE 4
FREQUENCY DISTRIBUTIONS OF SIZE OF GiBBON TRrROOPS*
CARPENTER ELLEFSON
SizE H. lar H. lar H. agilis
2 2 6 4
S 1 14 2
4o 8 4 2
[ Z 6 3
26 4 1
Observed Predicted Observed Predicted
Hylobates lar H. lar Total Total
............. 8 10.9 12 14.4
e 15 12.5 17 15.3
..... 12 10.7 14 12.2
......... 9 7.3 9 7.8
............. 5 7.6 5 7.2

3.193
1.689

3
(5, .7)

* Data are from Carpenter (1940) and Ellefson (1967). Unpublished data reproduced
by kind permission of Dr. John O. Ellefson.

not the sum of birth plus (troop) immigration rates. Because troops of size
1 are excluded, the observed data should be fitted by the 0,1-truncated
Poisson distribution.

Table 4 shows that the 0,1-truncated Poisson distribution does describe
satisfactorily the sum of Ellefson’s and Carpenter’s data on H. lar and the
sum of the data on H. lar and H. agilis. Though the pooling of data on two
different species seems biologically questionable a priori, both Carpenter
and Ellefson emphasize the behavioral unity of these gibbons and the
similarity in size and shape. As shown, the results of testing the pooled
data support that asserted unity.

The estimate that the ratio of the mean rate of births per troop per year
to the mean rate per individual of death or emigration per year is approxi-
mately 2.8 again needs to be checked independently.

COLOBUS AND LANGURS

Marler (1969) reported the size and composition of 19 troops of black
and white colobus monkeys (Colobus guereza) he observed in Uganda, along
with the sizes of five troops reported by previous observers (table 5).

Although the data are too few by themselves to make a convincing case
for the accuracy of the BIDE model’s equilibrium distribution, they fall
into the pattern being presented.

The 14 troop sizes Marler observed in the Budongo Forest, Uganda, are
consistent with a truncated Poisson distribution. The truncated Poisson
variance test (equation [9]) gives X2 = 17.170 with 13 degrees of freedom.
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TABLE 5
FREQUENCY DISTRIBUTIONS OF SIizZE oF CorLoBUS TROOPS*
I I1 III Iv v VI VII VIII
Size  Budongo Pred. Q. Eliz. Other Total Poisson Neg. bin.
1..... v 1 e 1
2..... 1 11 cee 1 2.2 Y
3..... . : 1 cee 1 1.3
4..... 1 e ... 1 1.9
5..... 1 1.1 1 e 2 2.1 2.3
6..... 1 1.6 vee 2 3 2.8 2.6
Tovun. 1 1.9 cee 1 3.3 2.6
8..... 2 1.9 1 vee 3 3.3 2.5
9..... 2 1.8 1 v 3 3.0 2.2
10..... - 1.5 e 1 3 2.5 1.9
11..... 3 1.1 v v 1.8 1.5
12..... v 1 1 1.2 1.2
13..... 2
14..... ... 2.0 17 ) 1.6
=15..... v 1.5
X2 ... 5.820 ves e ce 9.531 7.693
af .... 7 v v 3 8 10
P .... (.5, .7) ... 1 1 .2, .3) (.5, .7)

* Data are from Marler (1969). I: Size of colobus troop. II: Marler’s observations
in Budongo Forest, Uganda. ITI: Truncated Poisson distribution fitted to II; m, = 8.357.

IV: Marler’s observations in Queen Elizabeth National Park, Uganda. V: Observations
of Ullrich, and Schenkel and Schenkel-Hulliger, as reported by Marler (1969). VI: Sum
of II, IV, V; all observations. VII: Truncated Poisson distribution fitted to VI; my =

8.132. VIII: Truncated negative binomial distribution fitted to VI; p = 0.548, # = 9.770.

TABLE 6
FREQUENCY DISTRIBUTION OF SIZE OF BISEXUAL TRoOOPS OF HANUMAN LANGURS*
Size Observed Predicted
e 0 1.3
2 1P 0 1.0
L2 2 1.5
10, e i i 3 2.0
P 7 2.5
12 i i e 5 2.9
I 2P 1 3.2
N 1 3.4
S P 2 3.3
16, i e 2 3.1
17 e i 3 2.8
18, e 1 2.5
P 3 2.1
2] N 1 1.7
21 3 1.3
b g ) 17
D 1 1.6
/2 0.727
T e 40.251
X2 i 21.379
Af e 14
Y (0.05,0.1)

* Data are from Sugiyama (1964).
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The probability of a larger value by chance lies between .1 and .2. A distri-
bution fitted to these data in table 5 is acceptable with higher probability,
as expected, because of the small number of observations.

The total 24 observations reported by Marler may also be acceptably
fitted by a truncated Poisson distribution, as shown in table 5. But the
truncated Poisson variance test (equation [9]) gives X2 =—=40.3 with 23
degrees of freedom. The probability of a larger value by chance lies between
.01 and .02; so the acceptability of the truncated Poisson distribution is
doubtful.

As also shown in table 5, a truncated negative binomial distribution fits
substantially better. This negative binomial distribution may be the result
of pooling Poisson distributions with different means in different localities,
and not the result of a positive per-individual birth rate. Further data from
each locality are required to clarify how the negative binomial actually
arises.

Sugiyama (1964) did a roadside survey of the sizes of troops of hanuman
langurs (Presbytis entellus) near Dharwar, India. He emphasized the diffi-
culty of obtaining accurate counts. His best data, on the sizes of 38 bisexual
troops (Sugiyama 1964, p. 17) appear in table 6, along with a fitted
truncated negative binomial distribution. The fit is just barely acceptable
at the 5 percent level when 14 degrees of freedom are assigned. When 16
degrees of freedom are assigned, .1 < P < .2. Like the data on colobus,
these langur observations are too few to make a convincing case for or
against any distribution. At least they are consistent with the general
pattern.

BABOONS

Table 7 summarizes the size of troops of three species of baboons ob-
served in several localities by Warshall, Washburn, DeVore, Hall, and the
Altmanns (DeVore and Hall 1965, p. 29; Altmann and Altmann, in press).
I thank Dr. Stuart A. Altmann and Mr. Peter J. Warshall for permission
to use here previously unpublished data.!

DeVore and Hall reported their size counts grouped into the intervals
1-9, 10-19, 20-29, . .. ; Altmann reported his size counts grouped into the
intervals 1-10, 11-20, 21-30, . . . . To describe both systems I have adopted
the overlapping set of intervals 1-10, 10-20, 20-30, . . . and in the following
calculations have assumed that the frequency within each interval falls at
its midpoint, 5, 15, 25, . . . . The effect on the variance of this assumption
will be neglected.

Hall observed the sizes of 53 troops of chacma baboons (Papio ursinus)
in three separate areas of southern Africa. DeVore and Hall present only

1 Altmann has privately observed that different compilations of Hall’s observations
of chacma baboons differ from each other and from the original publication. These data
will be clarified and presented along with additional data of other observers in the
monograph of Altmann and Altmann (in press).
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the pooled frequencies, and it is assumed here that the birth, immigration,
and loss rates are the same for all troops included in the observed distribu-
tion. The predicted truncated negative binomial distribution agrees well
with the observed, as shown in table 7.

According to the estimated parameters, the ratio of the mean number of
immigrants per year to the mean number of births per individual per year
is approximately 2.7. The ratio of birth rate to loss rate is approximately
0.93. The evidence that immigration takes place is two observations of adult
males who shifted from one troop to another (location unspecified; DeVore
and Hall 1965, p. 38). But it is not possible with the available data to make
quantitative estimates of immigration, birth, or loss rates independently.

Altmann observed 48 troops, Washburn observed 15 troops, and Warshall
observed 16 troops of yellow baboons (Papto cynocephalus) in Amboseli
Reserve, Kenya. In pooling Warshall’s original data into intervals for
table 7, I used Altmann’s system. As shown, Altmann’s observations alone
may be described by the truncated negative binomial distribution. The fit
remains acceptable when Altmann’s, Washburn’s, and Warshall’s observa-
tions are combined. The remark made above about the possible dependence
of successive censuses of howler monkeys applies here, especially since
Altmann’s and Warshall’s counts were made within one year. The fit to the
combined frequency distribution is at least as good as the probability level
indicates.

Pooling all the observed sizes of baboon troops gives the total distribution
in table 7 (column XIV). The fit of the truncated negative binomial distri-
bution is marginal or poor. That the fit to the total distribution is clearly
worse than the fit to each separate species, distribution suggests at least that
the parameters of the different species are different.

A LOOK AT DYNAMICS

In all of these primate studies the only possibility of checking the de-
tailed dynamics of the BIDE model by getting independent estimates of
the parameters is provided by a few data of Altmann and Altmann (in
press). These data demonstrate clearly the virtue and necessity of sus-
tained, detailed, quantitative observation and reporting of primates.

Table 8, from Altmann, describes the changes in population size of
Altmann’s main study troop during a year of observation. The numbers in
the table, starting from row 1 at the top, are to be interpreted as follows:
The troop, when first observed, had 40 members. After 41 days at that size,
a birth occurred, raising the troop size to 41. After 5 days at that size, a
birth again increased troop size to 42; and so on.

From table 8 it is easy to construct a frequency histogram of the number
of days between births and another frequency histogram of the number of
days between losses (deaths or emigrations). The BIDE model would
predict that both of these histograms would have a negative exponential
shape, with scale parameters A and p, respectively. Though the data are too
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TABLE 8
BmrrH (B), IMMIGRATION (I), DEATH (D), AND EMIGRATION (E)
IN ALTMANN’S MAIN STUDY TrOOP*

Row After this at this this event
J many days troop size occurred.
1 i i 41 40 B
2 5 41 B
. 2N 22 42 B
4 o e 2 43 D
2 17 42 D
[ 26 41 I
T e i 0 42 I
A 55 43 B
N 35 44 I
N 20 45 E
5 5 44 D
12t i 6 43 E
18 i 32 42 D
I 4 41 D
15 i e 0 40 D
16 o i 22 39 D
17 i 10 38 B
18 ittt 0 39 B
19 i i 7 40 D
2] 4 39 B
21 e 17 40 D
22 i 11 39 E
P2 S 3 38 B
24 e 4 39 D
27 2 8 38 D
26 i 2 37 D
2T e 5 36 B
28 i 10 37 B
....................... final 38

* Unpublished data reproduced by kind permission of Dr. Stuart A. Altmann. For
further explanation see text.

few to confirm this prediction in detail, the actual histograms (not shown)
do have an approximately negative exponential shape, being highest near
the origin and asymptoting concavely to zero.

To obtain estimates of A, n, and v from table 8, let T'; be the number of
days in the jth row and let X; be the size in the jth row which the troop
maintained for T; days. Then simply summing up the number of monkey-
days at risk of giving birth or of leaving the troop, we have

28
expected births = A Z T;X; = 4(15407) (10)
i—1
and
28
expected losses = Z T,X; = n(15407), 11
=1

where A and p are in units of individual—! day—!. Since the probability of
immigration to the troop is assumed independent of troop size, we also have
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28
expected immigrations = v Z T;=v - 373, 12)
=1
where v is in units of day—*.

Setting the expected numbers of births, losses, and immigrations equal,
respectively, to the numbers actually observed, namely, 10, 15, and 3, gives
the estimates A = 0.000649 per individual per day, p = 0.000974 per indi-
vidual per day, and v = 0.008043 per day. Note that the initial assumption
that & < p is here independently confirmed. In view of the small numbers
of observed events on which these estimates are based, no confidence should
be attached to the significant figures after the first; but it seemed best to
postpone rounding until after the calculations based on these estimates were
complete. The ‘‘jackknife,”” an extremely powerful statistical technique to
be described and used in the Appendix, will make it possible to set con-
fidence limits around these estimates of A, u, and v.

From equation (2) the parameters of the truncated negative binomial
distribution estimated from table 8 are » = 12.392 and ¢ = 0.667. Ideally,
the next step would be to compare a truncated negative binomial distribu-
tion having these parameters with the frequency distribution of size of the
main study troop on which the parameters are based.

From table 8 it is possible to construct a frequency distribution showing
the number of days the troop was at each size. But because of the low rates
of change in troop size per day, the period of observation was too short for
the full variability of troop size to appear. (Analogously, if a stock price is
watched for only a week, it is not possible to estimate the full distribution
of the price because there has not been time enough for it to vary.) Instead,
it is necessary to fall back on the assumption that all the other troops of
yellow baboons observed in Amboseli are independent replicates of the
same BIDE process.

Table 9 shows the result of comparing the predictions using these param-
eters with Altmann’s observations and with all observations of Amboseli

TABLE 9
FREQUENCY DISTRIBUTIONS OF SIZES OF YELLOW BABOON TR0OPS COMPARED
WITH TRUNCATED NEGATIVE BINOMIAL DISTRIBUTIONS®

I 11
ALTMANN ONLY ALL AMBOSELI
SizE Observed Predicted Observed Predicted
B ... 1.4 1 2.2
] N 2 16.0 5 25.7
20-30 ......ieiiien. 11 21.8 14 35.1
30-40 ......ieiiiiann 10 9.4 12 15.2
40— i 28 2.4 50 3.8
X i et i 297.15 592.46
i 2o0r4 20r4
Y <<L.01 <<L.01

* Parameter values caleulated from table 8, p — 0.333, r = 12.4. I: Altmann’s obser-
vations only. II: All yellow baboon counts in Amboseli.
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yellow baboons combined. The fits are clearly unacceptable, whether the X2
statistic is given two or four degrees of freedom.

Sustained observation of the main study troop and repeated censuses of
all troops in Amboseli Reserve over a period of several years could show
whether this failure is due to (1) small-sample fluctuations in the present
estimates of the parameters, (2) a difference in parameters between the
main study troop and the other troops in the reserve, or (3) the failure of
the BIDE process to represent accurately the dynamies of growth and loss
in this primate troop.

To rule out the first possibility, of small-sample fluctuations, it would be
necessary to show a greater difference than could be accounted for by
chance alone between the parameters of a truncated negative binomial
distribution obtained by fitting the distribution of troop size and the
parameters obtained from vital statistics (table 8). For example, for
Altmann’s baboons, from table 7, column V, p (fitted) = 0.056, r (fitted) =
2.986. We have just found p (vital) = 0.333, r (vital) = 12.392. Thus
p (fitted) — p (vital) = diff(p) = —0.277, and r (fitted) — r (vital) =
diff (r) =— —9.406. Given an estimate of the variance of diff(p) and the
variance of diff(r), we could construct 95 percent confidence intervals
around diff(p) and diff(r). If zero fell within these confidence intervals,
then we could conclude that the fitted parameters and those based on vital
statistics did not differ at the 5 percent level, and hence that, within the
fineness of detail of the available data, the baboon’s population dynamies
were consistent with the BIDE model.

The Appendix describes and applies to this question a very general,
powerful statistical technique called the ¢‘ jackknife.”” Though this technique
of estimating variability in limited samples of data has existed for over a
decade, I do not know of previous applications in biology.

The conclusion obtained from using the jackknife is that diff (p) is signif-
icantly different from zero at the 5 percent level, while diff () is not; hence
the parameter estimates of at least p based on fitting and on vital statisties
are probably different. See the Appendix for details.

The second possible explanation of the diserepancy between observed and
predicted counts in table 9, namely, a difference in parameters between the
main study troop and the other troops in the reserve, can only be established
by further field observations.

If, as is more likely, the BIDE process fails to represent accurately the
dynamics of growth and loss in this primate troop, then theoretical prob-
abilists will be called upon to construct more realistic stochastic models
consistent with the main finding of this paper: that the equilibrium distri-
butions of troop sizes in a wide variety of free-ranging primates are de-
scribed by the truncated negative binomial or truncated Poisson distribu-
tions. The simple birth-immigration-death-emigration model presented here
will then have served its purpose by directing attention to this regularity
and providing a first-order explanation of it.
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FURTHER PROBLEMS

These results suggest many more investigations. Possibilities lie (1)
within the purview of the BIDE model, (2) in ecology, (3) in population
genetics, and (4) in more systematic data and more realistic stochastic
population models.

First, in the BIDE model, if the birth rate remains constant but the
immigration rate approaches zero so that there is just enough immigration
to restart a theoretical population that becomes extinet, then the population
size will be logarithmically distributed (Bailey 1964, p. 100). This mathe-
matical result constitutes a challenge to field biologists to find a collection
of primate troops living in similar habitats but so separated that almost no
exchange between troops (no immigration) occurs. These troops should
also not have a birth rate that is independent of troop size, as it is in the
gibbons. The BIDE model then predicts that troop sizes will be logarithm-
ically distributed.

Second, the above results do not explain the parameters of the distribu-
tions of troop size. Why, for example, are there not half as many howler
troops, each twice as large, on Barro Colorado Island? Japanese macaques
may illuminate the effects both of different habitats on the same species
(since Japanese macaques occur naturally over a substantial range of
latitudes) and of sudden great increases in the production of the environ-
ment; the practice of feeding the macaque troops, initiated by the Japanese
scientists in order to facilitate behavioral observations, may be the simian
equivalent of an agricultural revolution. Analysis of the demographic
consequences might suggest how and what ecological factors influence
population parameters (cf. Kawai, Azuma, and Yoshiba 1967).

Third, theories of population dynamics and population genetics remain
to be wedded. In classical population genetics, the theoretical study of
populations subdivided into groups each of which forms more or less a
breeding unit by itself (Li 1955, chap. 21) has generally assumed that each
group contains the same number of breeding individuals. But the breeding
units (troops) of the primates described here vary in size. Certain results
such as Wahlund’s formula are easily extended to groups of variable size
within a theoretical population. Other effects of great importance, such as
inbreeding, migration, and selection, have not yet been examined when
group size is Poisson or negative binomially distributed. For such genetic
and other analysis, one needs stochastic models of systems of groups (in the
present cases, troops) which are not independent—in which, for example,
the emigrants from some groups become the pool of immigrants for other
groups. Such models have been constructed for population sizes (Puri
1968) and for sociological applications (Cohen, ¢‘ Casual Groups of Monkeys
and Men: Stochastic Models of Elemental Social Systems,’’ in prep.), but
the genetics is largely unexplored (Pollak 1968).

Finally, insufficient interaction between model builders and field bio-
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logists usually leaves biologists indifferent to unrealistic models and leaves
modelers hungry for systematic data to test the details of models. Field
biologists might find realistic questions for which their data would be useful
in recent developments in multidimensional linear birth-and-death pro-
cesses (Mileh 1968), which describe theoretically the fluctuations in popula-
tions containing different genotypes. Available data might prompt modelers
to ask: what other, more realistic stochastic population models can represent
the known differences in natality, mortality, and migration due to maturity
and sex (Goodman 1968), the seasonality of birth, the effects of social status
within the troop on breeding, and possibly other data, and still tie together
in a predictive way all the data on troop size presented here? Can such a
model be constructed which is also analytically tractable ?

SUMMARY

A simple stochastic population model which assumes constant birth, loss
(death or emigration), and immigration rates equally and independently
applicable to all individuals in a theoretical population predicts at equilib-
rium a negative binomial distribution of population size if all three rates
are strictly positive and a Poisson distribution of population size if only the
birth rate is zero or if births occur at a rate independent of population size.

If the theoretical population of the model is interpreted as a troop of free-
ranging primates (and not necessarily as a genetic or ecological popula-
tion), several species of primates appear to confirm the equilibrium
predictions of the model.

The observed frequency distributions of size of troops of howler monkeys
approximate a truncated negative binomial except after an epidemic which
removed young monkeys; the size distribution, then, is nearly truncated
Poisson, as expected.

In gibbons, whose troops have a birth rate independent of troop size, the
observed distributions appear to be truncated Poisson. Though few data
are available, colobus monkeys seem consistent with this pattern.

Sizes of bisexual troops of hanuman langurs approximate a truncated
negative binomial distribution. Baboon troops have approximately truncated
negative binomial distributions of size, but the parameters of the distribu-
tions appear to differ more from one species to another than to the param-
eters of the distributions fitted to different gibbon species.

The only available detailed vital statistics on a single baboon troop sug-
gest that the simple dynamics of the stochastic model is not faithful to what
actually happens, even though the equilibrium distributions are. A statistical
technique apparently new to biology, called the ‘‘jackknife,”’ indicates that
the variability of the baboon data is not sufficient to account for the differ-
ence between the estimate of a parameter of the truncated negative binomial
obtained by fitting the troop size distribution and the estimate of the same
parameter obtained from vital statistics. Hence the innards of the model
may be faulty. Both better models and better data, especially in combina-
tion, are needed.
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APPENDIX
THE JACKKNIFE AND ITS APPLICATION

“The jackknife offers ways to set sensible confidence limits in complex situations,”
say Mosteller and Tukey (1968, p. 134). The bare bones of the technique, as they
present it, along with my way of applying it to Altmann’s baboen data, will be
presented here.

The goal is to assess the variance of any statistic y (such as r [fitted] or » [vital]
or diff[r]) with respect to a given sample of data (such as table 7, column IV; and
table 8). Suppose the sample is divided into some number % of blocks of observa-
tions. Let y 4, be the value of the statistic obtained on the basis of all observations
in the sample except those in the jth block, that is, with the jth block omitted. Let
Yan be the statistic calculated on the basis of the whole sample. Then pseudovalues
are defined as

Yos=kgan— (k—1y, j=L2,...,k (A-1)
The jackknifed estimate, the “best single result,” is then given by
Y= (Y1 + ...+ ya) /k; (A-2)
and an estimate of its variance is given by
s = [Zya — (2ye)2/k]/[k(k —1)]. (A-3)

Mosteller and Tukey (1968, pp. 136-138) adjoin various admonitions to this simple
calculation, admonitions which have been heeded but will not be repeated here.
According to their rule of thumb, the degrees of freedom for the value of ¢ used to
find the confidence interval are one less than the number of different numbers which
appear as pseudovalues.

To apply the jackknife to the fitted parameters p (fitted) and r (fitted) as given
by equation (6), I found from tables a random permutation of the integers from 1
to 51 (Altmann observed 51 troops). Ranking the observed troop sizes from smallest
to largest, I then crossed off the five observations whose rank was given by the first
five random numbers. On the basis of the remaining 46 observations, I calculated
pa) and r(;) from equation (6), the subseript indicating that the first block was
omitted. I then restored those five observations and struck out the next five randomly
ranked observations to obtain ps) and r(s). The last estimates, p0) and 7o),
were based on the 45 observations remaining when the last six randomly ranked
observations were struck out. In this way each observation was omitted from just
one estimate of p; and r(;).

Pseudovalues were found from equation (A-1) by replacing y first by p and then
by r. Jackknifed estimates p. and r. and their variances s2(p) and s2(r) then
follow from equations (A-2) and (A-3).

The first two lines of table Al show that the resulting jackknifed estimate of
p (fitted) is 0.0770 and that the standard deviation (square root of variance) of
that estimate is 0.00476. (All calculations were carried out to eight significant
figures; only the first few are reported here.) Since this variance has nine degrees
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TABLE Al
RESULTS OF APPLYING THE JACKKNIFE TO THE PARAMETERS OF THE
BIDE MODEL ESTIMATED FROM DATA OF ALTMANN¥*

Parameter Y - Sa daf 959% confidence
p (fitted) .... 0.077 0.00476 9 (.066,.088)
r (fitted) .... 3.988 0.437 9 (3.00,4.98)
p (vital) . 0.328 0.0370 9 (.245,.412)
r (vital) . 7.843 12.461 9 (—20.3,36.0)
diff (p) ..... —0.252 0.036 9 (—.333,—.170)
diff (r) ..... —3.855 12.486 9 (—32.1,24.4)
A 6.5 X 10—4 2.9 X 10—4¢ 9 (—0.2,13.1) X 10—¢
Bovieeennnnns 16.1 X 10—4 8.7 X 10—4 9 (—3.5,35.8) X 10—¢
Vo oieiienennn 8.0 X 10—3 5.7 X 10—3 9 (—4.9,21.0) X 10—3

* Altmann’s data: from table 7, col. IV; and table 8. y. = the jackknifed estimate of
the parameter value; s. = its standard deviation; df = the degrees of freedom used to
construet the 95% confidence interval.

of freedom, the 95 percent confidence interval is p. == |tg]g5 * s» (p) = 0.077 =
(2.262) (0.00476) =(0.066, 0.088), as shown in the first line of table Al. The con-
fidence intervals in the remaining lines are calculated in the same way.

To apply the jackknife to the estimates of p and r based upon the vital statisties,
I divided the sequence of 373 days recorded in table 8 into 10 blocks, the first, fifth,
and tenth containing 38 days and the remaining blocks containing 37. In sequence,
block by block, I removed each set of days and the events which occurred during
those days from table 8 and calculated the parameters A, K, and v(; from
equations (10), (11), and (12) and the parameters r;, and D) from equation (2).
For example, when the first 38 days are omitted, 335 days remain; during that time
there were 10 births, 3 immigrations, and 15 losses When the last 38 days are
omitted, in the remaining 335 days there were 7 births, 3 immigrations, and 11 losses.

The results of applying the jackknife to A, u, and v and to p (vital) and r (vital)
appear in table Al. The negative values for the lower ends of the confidence inter-
vals around r (vital), }, u, and v are an artifact of the jackknife, which approximates
the distribution of a statistic by a symmetrical distribution. For purposes of inter-
pretation, these negative lower limits should be adjusted upward to zero. Mosteller
and Tukey (1968) suggest other ways of getting around this problem.

To apply the jackknife to diff(p) = p (fitted) — p (vital) and diff(r) =7
(fitted) — r (vital), block estimates were formed by simple subtraction: diff(p) ;) =
p (fitted) — pyy (vital) (similarly for r); and equations (A-1), (A-2), and
(A-3) were applied. The results are given in table A1l. While the estimate of » based
on fitting the equilibrium distribution does not differ significantly at the 5 percent
level from the estimate of r based on the vital statistics, the two estimates of p do
differ significantly.
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