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BIOMETRICS 29, 623-635 
December 1973 

WHAT TIME DO THE BABOONS COME DOWN FROM THE TREES? 
(AN ESTIMATION PROBLEM) 

STEPHEN S. WAGNER AND STUART A. ALTMANN 

Allee Laboratory of Animal Behavior, University of Chicago, Chicago, Illinois 60637, U.S.A. 

SUMMARY 

We consider a system that can be in either of two observable states, that begins each 
day in the first state, and exactly once each day makes a transition to the second state. 
An observer records the time of transition on a number of days, but on certain other days 
arrives too late to witness the transition. On those days he can only say that the transition 
occurred sometime earlier than his arrival time. We show how to use all the available data 
to obtain an unbiased estimate of the distribution of transition times. 

1. PROBLEM 

In the course of analyzing data on the ecology of baboons in East Africa, 
the following problem in statistical estimation arose. Consider a system 
that can be in one of two observable states, that always begins the day in 
the first state and exactly once each day makes a transition to the second 
state. The observer's task is to estimate the probability distribution of the 
transition times. However, the time at which observations begin each day 
is variable, so that on some days the observer arrives in time to witness the 
transition, whereas on other days he arrives too late. How can such an observer 
utilize the data that are available to obtain an unbiased estimate of the 
probability that transitions will take place during any specified interval? 

The biological problem that gave rise to this estimation problem is this. 
The Amboseli Reserve, Kenya, consists primarily of open savannah, punc- 
tuated here and there by a grove of trees or a water hole. Baboons in this 
area sleep in trees every night, but descend from the trees in the morning 
and move out across the savannah where they spend the day foraging, often 
quite far from their sleeping trees. One of the baboon groups in Amboseli 
was studied in detail. In this group the time-hereafter called the "descent 
time"-at which the median member of the group descended to the ground 
was recorded whenever we arrived in time to witness it. On a number of 
other days, however, we arrived too late to see this median descent and 
could only record the fact that more than half (usually all) of the members 
of the group were on the ground. On each day, the time at which observation 
on this group began was recorded. We would like to know the distribution 
of descent times, since it is an important variable in determining exactly 
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how the baboons allocate the hours of the day among the various activities 
or states necessary for their survival. 

In this paper we shall present a technique for utilizing such data to obtain 
an estimate of the probability distribution. Although we describe the tech- 
nique in terms of baboon descents, it will be clear that it applies as well 
to any other comparable data. 

The African field research was carried out by the junior author in col- 
laboration with Jeanne Altmann (see Altmann and Altmann [1970]). The 
estimation technique was developed by the authors of this paper. 

2. METHOD 

One might suppose that he could simply assign to each time-segment 
(t, t + A) the proportion of observed descents falling in that segment. Un- 
fortunately that procedure is biased: late descents were more likely to be 
witnessed than early ones, and hence that procedure would bias the results 
in favor of late descents (displace the distribution "to the right"). 

There are two ways in which the true probability distribution can be 
approximated. First, we could restrict ourselves to those days on which we 
actually witnessed the median descent and recorded its time. Such data can 
be used without bias in the following manner. For any time-segment (t, t + A) 
use only data from days on which we arrived at the study group and began 
observing by time t; assuming independence between arrival time and descent 
time, these data will be unbiased. Divide them into "successes", i.e. descents 
during the interval (t, t + A), and "failures", i.e. descents before or after 
(t, t + A). In the usual way, then, the number of successes divided by the 
number of (successes + failures) is the maximum likelihood (ML) estimate 
of the probability of descent during (t, t + A). 

However, this technique makes no use of the times when we began ob- 
servations part way through the interval in which we saw the baboons 
descend, data which could not be included without introducing bias, and 
it makes only incomplete use of the times when we arrived before the interval 
in which they decended. Furthermore, it ignores those times when we arrived 
and found the baboons on the ground. But the fact is that all three kinds 
of data contain some information about descent time and should not be 
discarded. 

If, for example, we are interested in the time period (0845, 0900), and 
on a certain day we located the group at 0903 and they were still in the trees, 
we are justified in using this day as an instance of their being in the trees 
throughout the interval 0845-0900, and indeed, during all earlier intervals 
that day, on the assumption that the group does not descend more than 
once per morning. (Notice that, even if the group ascended and descended 
several times before moving off to begin foraging-something which it has 
never been observed to do-we would simply define it to be in state one 
until the last descent and in state two thereafter.) Or suppose that we are 
considering the time period (0845, 0900), and on some days we located the 
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group after 0900 and they were already on the ground. While the descent 
time for such "late" days is not known, the distribution of descent times for 
such days among the periods preceding our arrival is likely to be the same 
as the observed distribution for days on which we arrived before the interval; 
thus, data from "late" days might be apportioned among each preceding 
time interval on the basis of the probability of descending during that interval, 
as estimated from all descents during the interval that were observed on 
days when we arrived before the interval began. Or better yet, since data 
added from days on which we arrived after the onset of the interval can be 
used to increase the accuracy of the probability estimates, the apportionment 
for each "late" datum should also be based on this additional information. 

The technique that we have developed makes use of all the data and does 
so in an unbiased way. It can be explained most easily through the use of 
the following notation: for any time-segments (a, b), (s, t), and (u, v), let 
DAS(a, b) denote the number of days on which observations began between 
a and b o'clock and the baboons descended between s and t o'clock, and let 
P(dtS I d.U) denote the probability that the baboons descend between s and 
t o'clock given that they descend between u and v o'clock. (For the sake of 
comparison, we remark that, in Altmann and Altmann [1970], the notation 
b'Dt' was used for Dts(a, b).) 

We make the following three assumptions. First, we assume a stationary 
source, i.e. that the probabilities do not change from day to day. Second, we 
assume the characteristic mentioned earlier, namely, that the animals always 
begin the day in state one (in the trees) and make exactly one transition 
to state two (on the ground). Third, we assume that the time of transition 
from state one to state two is independent of the time at which observations 
begin, or, symbolically, that 

DA8(a, b) DA8(a', 6') 
Dvu(a, b) Dvu(ad, 6') (1) 

for any time-segments (a, b), (a', b'), (s, t), and (u, v) with (s, t) c (u, v) 
where the equivalence symbol -' indicates that both sides are unbiased 
estimates of the probability P(dts I dvr). 

Two remarks are in order concerning equation (1). (i) If the segment 
(a, b) is larger than the segment (a', b'), the left-hand side will typically be 
a better estimate of P(dts I dv') than the right-hand side, being based on a 
larger sample. Consequently, we shall always take a = 0, and b as large as 
possible. (ii) In general, however, we cannot take b larger (later) than u or 
the value of Dvu(0, b) will be unknown. (For, if b > u, a missed descent after 
u cannot be distinguished from one before u.) An important exception is 
the case where u = 0: so long as b < v, the value of Dv'(0, b) will be known. 

We will estimate the probability of descent during any interval from the 
relative frequency of descents, both observed and estimated, during that 
interval. The frequency for each interval will be obtained from the sum of 
four terms, A, B, C, and D, which represent the number of descents during 
(t, t + A) for each of the four possibilities of arrival time: either we arrived 
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before t (and therefore saw the median descent), or we arrived during (t, t + A) 
but in time to see the descent, or we arrived during the interval but too late 
to see the descent, or finally, we arrived after t + A, and thus found the 
baboons on the ground. 

We make the following abbreviations. Let N denote the number of 
days of observation, including the days on which we arrived after 
the baboons' descent, and let o denote the latest time of observation. 
Let Dt+ At (- Dt+At(0, co)) denote the (usually unknown) number of days 
on which the baboons descended between time t and t + A, and let D,+,At(x) 
denote the number of days (typically 0 or 1, occasionally 2 or more because 
of the rounding-off of x; unknown if either x > t and t 5 0 or x > t + A) 
on which observations began at x o'clock and the baboons descended between 
t and t + A o'clock. Then 

P(dt +At) I_ DtNA =N(A + B + C + D), P(dt+At) N 

where 

A = Dt+At(0, t) and B = E Dt+AY(y) 
t<y<t +A 

are known through observation and 

C = E D1'(y) and D Dt+ +(t+A,w) 
t<y<t+A 

have to be estimated. 
The first term, A, is an unbiased sample of descents observed during the 

interval; for this we must, as indicated above, use the number of just those 
days on which we began observing on or before the onset of the interval, 
and saw the baboons descend during the interval. 

The second term, B, is the total number of descents in the interval on the 
days when we arrived during the interval but in time to witness the descent. 

The third term is the number of days on which the descent occurred in 
the interval out of all the days on which we arrived during the interval and 
the group had, by then, already descended. The -expected value of this 
number is 

C = E D[y]P(dt+At I dyo) (t < y < t + A), 

where D[y] abbreviates Dv?(y), the number of days on which we arrived 
at time y and found the baboons on the ground. On such days the median 
descent occurred at some time before y. The probability P(dt+A' I dv?) can 
be estimated from 

Dt(O, t) 

Dt?(0, t) + Dyt(O, t) = D(, t)/D (?, ), 

so we have the estimate 
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C = E D[y] Dt0) 

where the summation is carried outover all y in (t, t + A) for which D[y] 
is not zero. 

The fourth term is the number of descents expected in the interval out 
of those days not included so far, namely, those on which we began observa- 
tions after the end of the interval and the group had already descended. 
The expected value for these days is 

D = E D[z]P(dt+At I dzo) (z > t + A), 

where, once again, D[z] abbreviates D,?(z), the number of late arrivals at 
time z. The probability factors here could be estimated in an unbiased way 
as D,+,At(O, t)/Dz?(O, t) by the same reasoning as in the calculation of C. 
However, the technique that follows uses more of the available data and is 
therefore to be preferred. 

We note that because 0 < t < t + A, we have dt+l\t =_dt+AG dt+A&t 2 
and thus 

D = E D[z] P(dt+Af n dt+t I dzo) 
3~~ ~~~ I 

dt 

+ 

r)d)Pd+01d) = D[z].P(d,+A I dA+2 G d?) P(d ? A I 
z> t + A 

where the extra factor has been introduced by recalling that for any events 
E, F, and G, P(E G F I G) = P(F I E G G))P(E I G). But dt+,&0 G dz? 
dt +,&0, so we have 

D = E D[z] P(dt+At I dt+A>) P(dt+A? J dzo) 
z > t + A 

This can be estimated as follows 

D- E D Dt+A t(o t) Dt+A0(O, t + A) 
z>t+A [] Dt?(O, t) D,0(O t + A) 

Dt+At(O, t) Dt+A0(O, t + A) D[z] 
- Dt+AO(O t) z>t+A Dzo(O0 t + A) 

where the summation is carried out over all z greater than t + A for which 
D[z] is not zero. 

The final formula is therefore 

P(dt+A) = t [Dt+At(O t) + E Dt+AV(y) + E D[y] Dt (t 

+Dt+At(O t) Dt+A0(O, t + A) D[z] 1 (2) + Dt Dt+A0 z Dz?(02 t + A)J ' 

where t < y < t + A and z > t + A and, as before, D[y] and D[z] represent 
the number of late arrivals at times y and z respectively. 
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This formula is applicable to all intervals except the first-the so-called 
"left tail", say (0, t). For that we have the simpler formula 

P(dt0) = N [Dto(O, t) + Dt?(O, t) E D[z] t)l (3) 

For both these formulas the time t (and the number A) must be chosen large 
enough that, out of the days we arrived by time t, at least one descent oc- 
curred by the earlier of t + A and the time, say y, of the earliest arrival 
after t with a missed descent. This is necessary and sufficient to make both 
D?0 (0, t) and D, +AO(0, t) nonzero and, hence to ensure that no fraction in either 
formula has a zero denominator. 

3. COMPUTATION PROCEI)URE 

Choice of interval size is an important initial consideration in these 
calculations, since the numbers obtained via equation (2) for adjacent 
intervals cannot be lumped. Our choice of A as 15 minutes was based on 
values of D,+At(0, t)-the first term of equation (2)-since they are easy to 
obtain and indicate the minimal sample size per interval. We tried to keep 
A small, so that the number of intervals (and thus the number of degrees 
of freedom) would be kept large. 

In deciding which intervals should be grouped together to form the left 
and right tails, we lumped until each tail included at least one observed 
descent. A less stringent, but equally satisfactory requirement would be that 
each tail contain one known descent (observed or deducible). An even less 
stringent requirement-but one which must be satisfied to avoid a zero 
denominator-is this: if the first interval (the left tail) contains no known 
descent, then it must contain the arrival time corresponding to the earliest 
observed descent, and that descent must occur in the second interval and 
earlier than any late arrival. If this condition is satisfied, no zero denominators 
will be encountered in the calculations for any interval. 

The estimation technique that we have presented in equations (2) and 
(3) leads to a rather formidable counting task. Worse, it will have to be 
done by hand, since, in any situation that we can imagine, to program the 
procedure and prepare the data for a computer would require even more 
time. For that reason, we have devised a graphic technique that greatly 
facilitates the counting, and makes it practicable even with moderately 
large samples. The technique is as follows: 

(1) Prepare a list of observed descent times, indicating also the time 
that observations began on each of these days (see Table 1). IPrepare a 
separate list of the times of day that observations began for those days on 
which you arrived after the descent of the median number of the group 
(see Table 2). 

(2) Label a large sheet of graph paper with time of day across the top, 
allowing one graph line for each minute or for whatever was the smallest 
time unit used in the observations. (We used graph paper that was ruled 
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TABLE 1 
DESCENT TIME DATA FOR DAYS ON WHICH ARRIVAL WAS BEFORE MEDIAN DESCENT 

Arrival Descent Arrival Descent 
Date time time Date time time 

1. 25-11-63 0655 0656 30. 5-6-64 0825 0844 
2. 29-10-63 0657 0659 31. 17-7-64 0842 0845 
3. 5-11-63 0658 0720 32. 12-6-64 0815 0846 
4. 12-2-64 0715 0721 33. 28-2-64 0730 0848 
5. 29-3-64 0634 0743 34. 14-5-64 0830 0850 
6. 14-2-64 0738 0747 35. 7-7-64 0831 0855 
7. 18-2-64 0729 0750 36. 6-7-64 0822 0858 
8. 1-4-64 0727 0751 37. 2-7-64 0837 0858 
9. 8-2-64 0732 0754 38. 17-3-64 0803 0859 
10. 26-5-64 0758 0758 39. 10-6-64 0848 0859 
11. 19-2-64 0731 0805 40. 11-3-64 0830 0900 
12. 7-6-64 0758 0808 41. 23-7-64 0807 0904 
13. 22-6-64 0753 0810 42. 27-2-64 0723 0905 
14. 24-5-64 0753 0811 43. 31-3-64 0750 0905 
15. 21-2-64 0750 0815 44. 10-4-64 0824 0907 
16. 13-2-64 0734 0815 45. 22-4-64 0833 0908 
17. 11-6-64 0805 0820 46. 7-3-64 0832 0910 
18. 21-6-64 0756 0820 47. 29-2-64 0815 0910 
19. 13-3-64 0820 0825 48. 13-5-64 0758 0915 
20. 12-7-64 0817 0827 49. 20-4-64 0830 0920 
21. 30-6-64 0758 0828 50. 27-4-64 0801 0930 
22. 5-5-64 0823 0831 51. 28-4-64 0835 0930 
23. 12-5-64 0817 0832 52. 23-4-64 0900 0932 
24. 25-4-64 0831 0832 53. 4-3-64 0845 0935 
25. 26-3-64 0810 0833 54. 6-5-64 0840 0935 
26. 18-3-64 0813 0836 55. 26-6-64 0815 0945 
27. 15-3-64 0711 0840 56. 25-3-64 0722 0948 
28. 6-3-64 0755 0842 57. 8-7-64 0821 0952 
29. 11-5-64 0817 0844 58. 21-4-64 0810 1027 

10 lines to the half inch, both vertically and horizontally, but somewhat 
wider rulings would be easier to read.) This axis will represent descent times. 
For each day on which you arrive in time, the observed descent time will 
be plotted along this axis. For any day on which you arrive too late, the 
arrival time will be plotted; this is the latest possible descent time for that 
day. In the left margin, at any convenient spacing, mark off and label vertical 
segments to represent the time intervals into which the observer's arrival 
times will be grouped, with the first (earliest) time period beginning about 
one inch below the top of the graph. "Convenient" means one or two inches 
per interval-somewhat more if very large samples were obtained. Draw 
a horizontal "base line" at the top of the graph, but below the time marks 
(see Figure 1); the use of this line will be explained below. 

(3) Draw a "staircase" as follows. On a horizontal graph line near the 
lower end of each arrival-time segment, draw a horizontal "tread" line under 
the corresponding column segment. Join the ends of adjacent horizontal 
treads with vertical lines ("risers"), as in Figure 1. 

(4) Plot each observed descent as a red dot, positioned horizontally 
according to the time of median descent and vertically according to the 
time segment in which observations began that day. Place the dots on the 
vertical graph lines and just above the segment treads. If a descent was 
recorded on the boundary between two time segments, divide it in half 
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TABLE 2 
DESCENT TIME DATA FORZ DAYS ON WHICH ARRZIVAL WAS ArFrER MEDIAN DESCENT 

Arrival Arrival Arrival 
Date time Date time Date time 

1. 1-12-63 0705 32. 13-10-63 0840 63. 2-5-64 1012 
2. 6-11-63 0710 33. 4-7-64 0845 64. 1-3-64 1018 
3. 24-10-63 0715 34. 3-5-64 0850 65. 17-10-63 1020 
4. 26-11-63 0720 35. 25-5-64 0851 66. 23-10-63 1020 
5. 18-10-63 0720 36. 24-11-63 0853 67. 25-7-64 1020 
6. 7-5-64 0730 37. 15-7-64 0855 68. 13-7-64 1031 
7. 7-11-63 0740 38. 16-2-64 0856 69. 8-6-64 1050 
8. 23-11-63 0750 39. 10-3-64 0857 70. 9-3-64 1050 
9. 28-11-63 0750 40. 28-7-64 0858 71. 26-4-64 1100 
10. 27-11-63 0753 41. 18-6-64 0858 79. 14-10-63 1205 
11. 28-5-64 0755 42. 20-2-64 0858 73. 18-11-63 1245 
12. 5-7-64 0757 43. 2-8-64 0859 74. 2-3-64 1250 
13. 28-3-64 0800 44. 27-5-64 0900 75. 8-5-64 1405 
14. 23-3-64 0805 45. 28-10-64 0905 76. 1-7-64 1407 
15. 26-10-63 0805 46. 15-5-64 0907 77. 12-10-63 1500 
16. 11-7-64 0805 47. 10-5-64 0908 78. 31-7-64 1531 
17. 27-7-64 0807 48. 27-6-64 0915 79. 6-10-63 1535 
18. 9-6-64 0810 49. 11-10-63 0915 80. 19-6-64 1556 
19. 24-6-64 0812 50. 17-2-64 0920 81. 29-6-64 1603 
20. 16-10-63 0812 51. 22-10-63 0920 82. 9-5-64 1605 
21. 25-2-64 0813 52. 10-7-64 0925 83. 9-10-63 1625 
22. 6-6-64 0814 53. 14-7-64 0926 84. 8-3-64 1625 
23. 22-11-63 0815 54. 11-4-64 0931 85. 11-2-64 1653 
24. 10-10-63 0815 55. 23-5-64 0933 86. 30-5-64 1705 
25. 2-11-63 0815 56. 30-7-64 0943 87. 5-3-64 1708 
26. 23-6-64 0817 57. 18-7-64 0945 88. 26-2-64 1722 
27. 24-4-64 0823 58. 29-7-64 0946 89. 4-5-64 1728 
28. 3-7-64 0830 59. 16-7-64 0950 90. 12-3-64 1730 
29. 29-4-64 0831 60. 22-7-64 0955 91. 25-10-63 1730 
30. 4-8-64 0838 61. 15-10-63 0955 92. 29-11-63 1750 
31. 7-10-63 0840 62. 19-10-63 1005 93. 22-2-64 1801 

94. 22-3-64 1829 

DESCENT TIME ("RED' DOTS) 
OR LATEST POSSIBLE DESCENT TIME (=ARRIVAL TIME, BLACK DOTS) 

0630 0645 0700 0715 0730 0745 0800 

0-0700 1 
0700- 0730 a . 

RED NUMBERS- . 

< 0730 0800 
LEGEND 7 * o 

0800- 0830 @ RED DOTS DATUM FROM TABLE 1 

* BLACK DOTS 1 a DATUM FROM TABLE 2 

FIGURE 1 
GRZAPH UfSED TO FACILITATE COUNTING. FORt EXPLANATION, SEE TEXT. 
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between the two; make a notation to indicate that these are half dots. If 
an arrival time falls on a time segment boundary, place the dot in the earlier 
of the two segments. Whenever more than one dot falls in the same position, 
place the additional dots immediately above those already plotted. 

These procedures for handling boundary data are entailed by assump- 
tions not heretofore described. With a finite number of observations and a 
finite number of segments, there is, in theory, a zero probability that any 
arrival time or descent time will fall exactly on the boundary between two 
segments. In practice, of course, one cannot record a time with an infinite 
number of significant figures, so an event may very well appear to fall on a 
boundary and hence outside of any segment. It is no solution to use intervals 
(i.e. inclusive of end-points) instead of segments, for then the categories 
would not be mutually exclusive. It is also no solution to use categories 
of the form [a, b)-i.e. including the left end-point but not the right-for 
that would tend to inflate the later categories and deflate the earlier. One 
way to handle the problem, and the way we have chosen, is to treat any 
descent that was recorded on the boundary between two time segments as 
half a descent in the one segment and half a descent in the other. A justifica- 
tion for this procedure might be found in the consideration that the prob- 
ability is one-half that the true time of descent is within the first segment 
and one-half that it is in the second. On the other hand, whenever our arrival 
was recorded on a time boundary, we considered that the true arrival time 
was strictly before the boundary time. If one uses the above procedures, 
the number of events falling in the interval [a, b] is the same as the number 
falling in the segment (a, b). 

(5) Plot a black dot for each day on which observations began after 
the descent of the median animal, aligning the dot horizontally in the space 
.immediately preceding the vertical line for the minute in which the arrival 
took place, [cf. (4)] and vertically in the corresponding time segment. 

(6) Draw a vertical red line from each red dot down to the tread below 
it. For half dots, draw dashed lines. Draw a vertical black line from each 
black dot up to the base line (see step 2). If a black or red line represents 
more than one dot, indicate the number above the base line (black dots) 
or below the tread (red dots). 

(7) Number the red dots from left to right, placing red numbers im- 
mediately below each tread. Similarly number the black dots, again beginning 
with 1 for the left-most dot. 

This completes the graph. With it, the counts specified by the components 
of equation (2) for each time-segment (t, t + A) become routine. 

In order, they are found as follows: N is the total number of days in the 
sample. The number D,+ j'(0, t) will be the number of red dots directly 
(vertically) above the tread of time-segment (t, t + A) that are at least as 
high as some higher tread. The number E, D,+,'(y) is the number of all 
remaining red dots directly above the tread of segment (t, t + A). Thus, 
the sum Dt+Ajt(O, t) + E, D, +,,(y) is simply the total number of red dots 
above the tread of (t, t + A). 
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The next three numbers are obtained for each minute y in the time 
segment, or, practically speaking, for each minute y such that D[y] is non- 
zero. The number E, D[y] is the number of black dots in the space just to 
the left of time-line y (minute-line y in our study), yet still directly above 
the tread of (t, t + A). The number D't(0, t) is the number of red dots that 
are anywhere left of time-line y and which lie at least one time-segment 
above the tread of (t, t + A). The number D,'(O, t) is the number of red 
and black dots that are anywhere to the left of time-line y and that are at 
least as high as the tread of (t, t + A). 

The next number, Dt+At(0, t), has already been described. The number 
Dt+A?(0, t + A) is the total number of dots (red or black) anywhere on or 
left of time-line t + A but at least as high as the tread of (t, t + A). 

The number Dt+ A(O, t) is the total number of dots (red or black) that 
are on or left of time-line t + A and are at least as high as the next higher 
tread. 

The next two numbers are obtained for each late arrival time z after 
the end of time-segment (t, t + A). The number D[z] is the number of black 
dots that are in the space immediately to the left of time-line z. Because 
z > t + A, these dots are all above treads of later (lower) time segments. 
The number Dz0(O, t + A) is the number of red or black dots strictly to the 
left of time-line z and at least as high as the tread of (t, t + A). (Since we are 
dealing here with a descent that is known to have occurred before time z, 
the time z itself is not included.) 

The graph also facilitates the counting that is specified by equation (3), 
for the left tail of the distribution. N is the total number of days in the sample. 
Dt0(O, t) is the number of black and red dots directly above the left-most 
tread. The, n(xt two numbers are, obtained for each minute, z that is greater 
than t (i.e. anywhere, to the, right of the, left-most riser) and for which D[z] 
is nonzero. D[z] is the number of black dots in the space immediately to the 
left of time-line z. Dz0(O, t) is the number of black and red dots that are 
strictly to the, left of minute z and above, the level of the left-most tread. 
(As before, the, time z is not included.) 

4. ItESULTS 

Data on descent of yellow baboons from groves of f(v(r trees are given 
in Tables 1 and 2. These data were obtained in the Masai-Amboseli Game 
Reserve, Kenya, during 1963-64. The ecology of this baboon population 
has been described by Altmann and Altmann (1970). The probability distri- 
bution of descent times (Figure 2) was obtained from the data in Tables 
1 and 2 by means of equations (2) and (3). 

Since each day's sample is essentially a Bernoulli trial, binomial con- 
fidence limits may be placed on the estimate for each time period. For the 
purpose of calculating confidencee limits for cach time period (t, t + A), one 
must associate with that period a sample size. That size is certainly no less 
than the number N, = DG,?(0, t) of days on which we arrived by the beginning 



WHAT TIME DO THE BABOONS COME DOWN? 633 

of the interval. In fact, since some additional information is gained from 
the days on which we arrived after the beginning of the interval, the "true" 
sample size is no doubt larger than Nt-but probably not as large as Nt + 
Ds,?(t, c) = N. Those two values, N, and N, determine an outer and an inner 
pair of confidence limits for the period (t, t + A), both of which are plotted 
in Figure 2. 

The results, using 15-minute time periods, are shown in the bottom 
graph of Figure 2. For comparison, we have also carried out the calculations 
using 30-minute time periods (Figure 2, top graph). This gives smaller 
confidence intervals for the probability estimates because of the larger 
sample sizes, but of course the resulting probability statements have less 
temporal precision. (As we noted earlier, we cannot pool frequencies of 
adjacent 15-minute intervals to get the frequency distribution for 30-minute 
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intervals. Rather, for each new choice of interval size, we must carry out 
a new frequency count according to equations (2) and (3).) The uncorrected 
distribution of observed descent times is shown in the upper graph of Figure 
2; the bias of the data, particularly against early descents, is evident. 

5. UNSOLVED PROBLEMS 

Although unbiased estimates of relative frequencies were used to estimate 
the probabilities that are components of equations (2) and (3), we have not 
demonstrated that the resulting probabilities of transformation from state 
one to state two during each time interval are ML estimates, although it 
seems reasonable that they are. (A referee doubted this.) 

It is not clear how to obtain unbiased estimates of the mean and variance 
of the population, since the distribution of some data is contingent upon 
the distribution of others. 

The probability estimates obtained from equations (2) and (3) may not 
add up to 1, when summed over all time segments. This is so because the 
sample varies from one interval to the next. Any attempt to normalize the 
probabilities should take into account these differences in sample size, but 
the best way to do this is as yet unclear. 

A referee has proposed an estimation procedure different from ours, 
namely that of first estimating the cumulative distribution function (cdf) 
and then differencing the cdf to construct the frequency histogram. Thus, 
the cdf being given by equation (3), the probability estimates would be 
given by 

P(dt+A t) = P(dt+A0) - P(dto) 

Dt+A0(O, 1 + A)1+ > ;0~[~ 
N z>t+zA Dzo(Ul t + 

O A)] 

-N Dt0(O, t)[I + E D[y] ] jv Y>t D ( 1 

This would have the advantage of being computationally simpler, and of 
giving a histogram already normalized. A disadvantage would be that the 
estimated cdf may fail to be nondecreasing, so that in certain cases some of 
the probability estimates would be negative. Also we suspect, but have been 
unable to establish, that this estimate will be subject to greater fluctuations 
than ours just because it is formed from differences rather than sums. With 
regard to other, perhaps more important, measures of superiority, such as 
a "fuller" use of the available data or greater "efficiency", the questions 
remain open. 
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A QUELLE HEURE LES BABOUINS DESCENDENT-ILS DES ARBRES? 
(UN PROBLEME D'ESTIMATION). 

RESUME 

On considere un systeme qui peut etre en l'un ou I'autre de deux etats observables, 
qui commence chaque jour dans le premier etat et, exactement une fois par jour, effectue 
une transition vers le second etat. Un observateur note l'heure de transition un certain 
nombre de jours, mais certains autres jours il est arrive trop tard pour etre t6moin de la 
transition. Ces jours la il peut seulement dire que la transition s'est passee anterieurement 6 
son arrivee. Nous montrons comment utiliser toutes les donnees disponibles pour obtenir 
un estimateur sans biais de la distribution des temps de transition. 
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Key Words: Censored data; Biased data; Transition times; Circadian rhythms;.Diurnal 
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